University of Minnesota
Abstract:Cardiac MRI, crucial for evaluating heart structure and function, faces limitations like slow imaging and motion artifacts. Undersampling reconstruction, especially data-driven algorithms, has emerged as a promising solution to accelerate scans and enhance imaging performance using highly under-sampled data. Nevertheless, the scarcity of publicly available cardiac k-space datasets and evaluation platform hinder the development of data-driven reconstruction algorithms. To address this issue, we organized the Cardiac MRI Reconstruction Challenge (CMRxRecon) in 2023, in collaboration with the 26th International Conference on MICCAI. CMRxRecon presented an extensive k-space dataset comprising cine and mapping raw data, accompanied by detailed annotations of cardiac anatomical structures. With overwhelming participation, the challenge attracted more than 285 teams and over 600 participants. Among them, 22 teams successfully submitted Docker containers for the testing phase, with 7 teams submitted for both cine and mapping tasks. All teams use deep learning based approaches, indicating that deep learning has predominately become a promising solution for the problem. The first-place winner of both tasks utilizes the E2E-VarNet architecture as backbones. In contrast, U-Net is still the most popular backbone for both multi-coil and single-coil reconstructions. This paper provides a comprehensive overview of the challenge design, presents a summary of the submitted results, reviews the employed methods, and offers an in-depth discussion that aims to inspire future advancements in cardiac MRI reconstruction models. The summary emphasizes the effective strategies observed in Cardiac MRI reconstruction, including backbone architecture, loss function, pre-processing techniques, physical modeling, and model complexity, thereby providing valuable insights for further developments in this field.
Abstract:The previous support vector machine(SVM) including $0/1$ loss SVM, hinge loss SVM, ramp loss SVM, truncated pinball loss SVM, and others, overlooked the degree of penalty for the correctly classified samples within the margin. This oversight affects the generalization ability of the SVM classifier to some extent. To address this limitation, from the perspective of confidence margin, we propose a novel Slide loss function ($\ell_s$) to construct the support vector machine classifier($\ell_s$-SVM). By introducing the concept of proximal stationary point, and utilizing the property of Lipschitz continuity, we derive the first-order optimality conditions for $\ell_s$-SVM. Based on this, we define the $\ell_s$ support vectors and working set of $\ell_s$-SVM. To efficiently handle $\ell_s$-SVM, we devise a fast alternating direction method of multipliers with the working set ($\ell_s$-ADMM), and provide the convergence analysis. The numerical experiments on real world datasets confirm the robustness and effectiveness of the proposed method.
Abstract:Continual Learning (CL) focuses on learning from dynamic and changing data distributions while retaining previously acquired knowledge. Various methods have been developed to address the challenge of catastrophic forgetting, including regularization-based, Bayesian-based, and memory-replay-based techniques. However, these methods lack a unified framework and common terminology for describing their approaches. This research aims to bridge this gap by introducing a comprehensive and overarching framework that encompasses and reconciles these existing methodologies. Notably, this new framework is capable of encompassing established CL approaches as special instances within a unified and general optimization objective. An intriguing finding is that despite their diverse origins, these methods share common mathematical structures. This observation highlights the compatibility of these seemingly distinct techniques, revealing their interconnectedness through a shared underlying optimization objective. Moreover, the proposed general framework introduces an innovative concept called refresh learning, specifically designed to enhance the CL performance. This novel approach draws inspiration from neuroscience, where the human brain often sheds outdated information to improve the retention of crucial knowledge and facilitate the acquisition of new information. In essence, refresh learning operates by initially unlearning current data and subsequently relearning it. It serves as a versatile plug-in that seamlessly integrates with existing CL methods, offering an adaptable and effective enhancement to the learning process. Extensive experiments on CL benchmarks and theoretical analysis demonstrate the effectiveness of the proposed refresh learning. Code is available at \url{https://github.com/joey-wang123/CL-refresh-learning}.
Abstract:We introduce DragAnything, which utilizes a entity representation to achieve motion control for any object in controllable video generation. Comparison to existing motion control methods, DragAnything offers several advantages. Firstly, trajectory-based is more userfriendly for interaction, when acquiring other guidance signals (e.g., masks, depth maps) is labor-intensive. Users only need to draw a line (trajectory) during interaction. Secondly, our entity representation serves as an open-domain embedding capable of representing any object, enabling the control of motion for diverse entities, including background. Lastly, our entity representation allows simultaneous and distinct motion control for multiple objects. Extensive experiments demonstrate that our DragAnything achieves state-of-the-art performance for FVD, FID, and User Study, particularly in terms of object motion control, where our method surpasses the previous methods (e.g., DragNUWA) by 26% in human voting.
Abstract:Knowledge-based visual question answering (KB-VQA) is a challenging task, which requires the model to leverage external knowledge for comprehending and answering questions grounded in visual content. Recent studies retrieve the knowledge passages from external knowledge bases and then use them to answer questions. However, these retrieved knowledge passages often contain irrelevant or noisy information, which limits the performance of the model. To address the challenge, we propose two synergistic models: Knowledge Condensation model and Knowledge Reasoning model. We condense the retrieved knowledge passages from two perspectives. First, we leverage the multimodal perception and reasoning ability of the visual-language models to distill concise knowledge concepts from retrieved lengthy passages, ensuring relevance to both the visual content and the question. Second, we leverage the text comprehension ability of the large language models to summarize and condense the passages into the knowledge essence which helps answer the question. These two types of condensed knowledge are then seamlessly integrated into our Knowledge Reasoning model, which judiciously navigates through the amalgamated information to arrive at the conclusive answer. Extensive experiments validate the superiority of the proposed method. Compared to previous methods, our method achieves state-of-the-art performance on knowledge-based VQA datasets (65.1% on OK-VQA and 60.1% on A-OKVQA) without resorting to the knowledge produced by GPT-3 (175B).
Abstract:Accurately predicting the survival rate of cancer patients is crucial for aiding clinicians in planning appropriate treatment, reducing cancer-related medical expenses, and significantly enhancing patients' quality of life. Multimodal prediction of cancer patient survival offers a more comprehensive and precise approach. However, existing methods still grapple with challenges related to missing multimodal data and information interaction within modalities. This paper introduces SELECTOR, a heterogeneous graph-aware network based on convolutional mask encoders for robust multimodal prediction of cancer patient survival. SELECTOR comprises feature edge reconstruction, convolutional mask encoder, feature cross-fusion, and multimodal survival prediction modules. Initially, we construct a multimodal heterogeneous graph and employ the meta-path method for feature edge reconstruction, ensuring comprehensive incorporation of feature information from graph edges and effective embedding of nodes. To mitigate the impact of missing features within the modality on prediction accuracy, we devised a convolutional masked autoencoder (CMAE) to process the heterogeneous graph post-feature reconstruction. Subsequently, the feature cross-fusion module facilitates communication between modalities, ensuring that output features encompass all features of the modality and relevant information from other modalities. Extensive experiments and analysis on six cancer datasets from TCGA demonstrate that our method significantly outperforms state-of-the-art methods in both modality-missing and intra-modality information-confirmed cases. Our codes are made available at https://github.com/panliangrui/Selector.
Abstract:In real-world applications, image degeneration caused by adverse weather is always complex and changes with different weather conditions from days and seasons. Systems in real-world environments constantly encounter adverse weather conditions that are not previously observed. Therefore, it practically requires adverse weather removal models to continually learn from incrementally collected data reflecting various degeneration types. Existing adverse weather removal approaches, for either single or multiple adverse weathers, are mainly designed for a static learning paradigm, which assumes that the data of all types of degenerations to handle can be finely collected at one time before a single-phase learning process. They thus cannot directly handle the incremental learning requirements. To address this issue, we made the earliest effort to investigate the continual all-in-one adverse weather removal task, in a setting closer to real-world applications. Specifically, we develop a novel continual learning framework with effective knowledge replay (KR) on a unified network structure. Equipped with a principal component projection and an effective knowledge distillation mechanism, the proposed KR techniques are tailored for the all-in-one weather removal task. It considers the characteristics of the image restoration task with multiple degenerations in continual learning, and the knowledge for different degenerations can be shared and accumulated in the unified network structure. Extensive experimental results demonstrate the effectiveness of the proposed method to deal with this challenging task, which performs competitively to existing dedicated or joint training image restoration methods. Our code is available at https://github.com/xiaojihh/CL_all-in-one.
Abstract:Rapid progress in machine learning and deep learning has enabled a wide range of applications in the electricity load forecasting of power systems, for instance, univariate and multivariate short-term load forecasting. Though the strong capabilities of learning the non-linearity of the load patterns and the high prediction accuracy have been achieved, the interpretability of typical deep learning models for electricity load forecasting is less studied. This paper proposes an interpretable deep learning method, which learns a linear combination of neural networks that each attends to an input time feature. We also proposed a multi-scale time series decomposition method to deal with the complex time patterns. Case studies have been carried out on the Belgium central grid load dataset and the proposed model demonstrated better accuracy compared to the frequently applied baseline model. Specifically, the proposed multi-scale temporal decomposition achieves the best MSE, MAE and RMSE of 0.52, 0.57 and 0.72 respectively. As for interpretability, on one hand, the proposed method displays generalization capability. On the other hand, it can demonstrate not only the feature but also the temporal interpretability compared to other baseline methods. Besides, the global time feature interpretabilities are also obtained. Obtaining global feature interpretabilities allows us to catch the overall patterns, trends, and cyclicality in load data while also revealing the significance of various time-related features in forming the final outputs.
Abstract:Aiming at the characteristics of the flying bird object in surveillance video, such as the single frame image feature is not obvious, the size is small in most cases, and asymmetric, this paper proposes a Flying Bird Object Detection method for Surveillance Video (FBOD-SV). Firstly, a new feature aggregation module, the Correlation Attention Feature Aggregation (Co-Attention-FA) module, is designed to aggregate the features of the flying bird object according to the bird object's correlation on multiple consecutive frames of images. Secondly, a Flying Bird Object Detection Network (FBOD-Net) with down-sampling and then up-sampling is designed, which uses a large feature layer that fuses fine spatial information and large receptive field information to detect special multi-scale (mostly small-scale) bird objects. Finally, the SimOTA dynamic label allocation method is applied to One-Category object detection, and the SimOTA-OC dynamic label strategy is proposed to solve the difficult problem of label allocation caused by irregular flying bird objects. In this paper, the algorithm's performance is verified by the experimental data set of the surveillance video of the flying bird object of the traction substation. The experimental results show that the surveillance video flying bird object detection method proposed in this paper effectively improves the detection performance of flying bird objects.
Abstract:In this work, we focus on exploring explicit fine-grained control of generative facial image editing, all while generating faithful and consistent personalized facial appearances. We identify the key challenge of this task as the exploration of disentangled conditional control in the generation process, and accordingly propose a novel diffusion-based framework, named DisControlFace, comprising two decoupled components. Specifically, we leverage an off-the-shelf diffusion reconstruction model as the backbone and freeze its pre-trained weights, which helps to reduce identity shift and recover editing-unrelated details of the input image. Furthermore, we construct a parallel control network that is compatible with the reconstruction backbone to generate spatial control conditions based on estimated explicit face parameters. Finally, we further reformulate the training pipeline into a masked-autoencoding form to effectively achieve disentangled training of our DisControlFace. Our DisControlNet can perform robust editing on any facial image through training on large-scale 2D in-the-wild portraits and also supports low-cost fine-tuning with few additional images to further learn diverse personalized priors of a specific person. Extensive experiments demonstrate that DisControlFace can generate realistic facial images corresponding to various face control conditions, while significantly improving the preservation of the personalized facial details.