Abstract:Harmful fine-tuning poses critical safety risks to fine-tuning-as-a-service for large language models. Existing defense strategies preemptively build robustness via attack simulation but suffer from fundamental limitations: (i) the infeasibility of extending attack simulations beyond bounded threat models due to the inherent difficulty of anticipating unknown attacks, and (ii) limited adaptability to varying attack settings, as simulation fails to capture their variability and complexity. To address these challenges, we propose Bayesian Data Scheduler (BDS), an adaptive tuning-stage defense strategy with no need for attack simulation. BDS formulates harmful fine-tuning defense as a Bayesian inference problem, learning the posterior distribution of each data point's safety attribute, conditioned on the fine-tuning and alignment datasets. The fine-tuning process is then constrained by weighting data with their safety attributes sampled from the posterior, thus mitigating the influence of harmful data. By leveraging the post hoc nature of Bayesian inference, the posterior is conditioned on the fine-tuning dataset, enabling BDS to tailor its defense to the specific dataset, thereby achieving adaptive defense. Furthermore, we introduce a neural scheduler based on amortized Bayesian learning, enabling efficient transfer to new data without retraining. Comprehensive results across diverse attack and defense settings demonstrate the state-of-the-art performance of our approach. Code is available at https://github.com/Egg-Hu/Bayesian-Data-Scheduler.
Abstract:Model inversion, which aims to reconstruct the original training data from pre-trained discriminative models, is especially useful when the original training data is unavailable due to privacy, usage rights, or size constraints. However, existing dense inversion methods attempt to reconstruct the entire image area, making them extremely inefficient when inverting high-resolution images from large-scale Vision Transformers (ViTs). We further identify two underlying causes of this inefficiency: the redundant inversion of noisy backgrounds and the unintended inversion of spurious correlations--a phenomenon we term "hallucination" in model inversion. To address these limitations, we propose a novel sparse model inversion strategy, as a plug-and-play extension to speed up existing dense inversion methods with no need for modifying their original loss functions. Specifically, we selectively invert semantic foregrounds while stopping the inversion of noisy backgrounds and potential spurious correlations. Through both theoretical and empirical studies, we validate the efficacy of our approach in achieving significant inversion acceleration (up to 3.79 faster) while maintaining comparable or even enhanced downstream performance in data-free model quantization and data-free knowledge transfer. Code is available at https://github.com/Egg-Hu/SMI.




Abstract:Text-to-image (T2I) diffusion models often exhibit gender bias, particularly by generating stereotypical associations between professions and gendered subjects. This paper presents SAE Debias, a lightweight and model-agnostic framework for mitigating such bias in T2I generation. Unlike prior approaches that rely on CLIP-based filtering or prompt engineering, which often require model-specific adjustments and offer limited control, SAE Debias operates directly within the feature space without retraining or architectural modifications. By leveraging a k-sparse autoencoder pre-trained on a gender bias dataset, the method identifies gender-relevant directions within the sparse latent space, capturing professional stereotypes. Specifically, a biased direction per profession is constructed from sparse latents and suppressed during inference to steer generations toward more gender-balanced outputs. Trained only once, the sparse autoencoder provides a reusable debiasing direction, offering effective control and interpretable insight into biased subspaces. Extensive evaluations across multiple T2I models, including Stable Diffusion 1.4, 1.5, 2.1, and SDXL, demonstrate that SAE Debias substantially reduces gender bias while preserving generation quality. To the best of our knowledge, this is the first work to apply sparse autoencoders for identifying and intervening in gender bias within T2I models. These findings contribute toward building socially responsible generative AI, providing an interpretable and model-agnostic tool to support fairness in text-to-image generation.




Abstract:Model merging-based multitask learning (MTL) offers a promising approach for performing MTL by merging multiple expert models without requiring access to raw training data. However, in this paper, we examine the merged model's representation distribution and uncover a critical issue of "representation bias". This bias arises from a significant distribution gap between the representations of the merged and expert models, leading to the suboptimal performance of the merged MTL model. To address this challenge, we first propose a representation surgery solution called Surgery. Surgery is a lightweight, task-specific module that aligns the final layer representations of the merged model with those of the expert models, effectively alleviating bias and improving the merged model's performance. Despite these improvements, a performance gap remains compared to the traditional MTL method. Further analysis reveals that representation bias phenomena exist at each layer of the merged model, and aligning representations only in the last layer is insufficient for fully reducing systemic bias because biases introduced at each layer can accumulate and interact in complex ways. To tackle this, we then propose a more comprehensive solution, deep representation surgery (also called SurgeryV2), which mitigates representation bias across all layers, and thus bridges the performance gap between model merging-based MTL and traditional MTL. Finally, we design an unsupervised optimization objective to optimize both the Surgery and SurgeryV2 modules. Our experimental results show that incorporating these modules into state-of-the-art (SOTA) model merging schemes leads to significant performance gains. Notably, our SurgeryV2 scheme reaches almost the same level as individual expert models or the traditional MTL model. The code is available at \url{https://github.com/EnnengYang/SurgeryV2}.
Abstract:Large language models (LLMs) have recently demonstrated state-of-the-art performance across various natural language processing (NLP) tasks, achieving near-human levels in multiple language understanding challenges and aligning closely with the core principles of semantic communication. Inspired by LLMs' advancements in semantic processing, we propose an innovative LLM-enabled semantic communication system framework, named LLM-SC, that applies LLMs directly to the physical layer coding and decoding for the first time. By analyzing the relationship between the training process of LLMs and the optimization objectives of semantic communication, we propose training a semantic encoder through LLMs' tokenizer training and establishing a semantic knowledge base via the LLMs' unsupervised pre-training process. This knowledge base aids in constructing the optimal decoder by providing the prior probability of the transmitted language sequence. Based on this foundation, we derive the optimal decoding criterion for the receiver and introduce the beam search algorithm to further reduce the complexity. Furthermore, we assert that existing LLMs can be employed directly for LLM-SC without additional re-training or fine-tuning. Simulation results demonstrate that LLM-SC outperforms classical DeepSC at signal-to-noise ratios (SNR) exceeding 3 dB, enabling error-free transmission of semantic information under high SNR, which is unattainable by DeepSC. In addition to semantic-level performance, LLM-SC demonstrates compatibility with technical-level performance, achieving approximately 8 dB coding gain for a bit error ratio (BER) of $10^{-3}$ without any channel coding while maintaining the same joint source-channel coding rate as traditional communication systems.




Abstract:Data-Free Meta-Learning (DFML) aims to derive knowledge from a collection of pre-trained models without accessing their original data, enabling the rapid adaptation to new unseen tasks. Current methods often overlook the heterogeneity among pre-trained models, which leads to performance degradation due to task conflicts. In this paper, we empirically and theoretically identify and analyze the model heterogeneity in DFML. We find that model heterogeneity introduces a heterogeneity-homogeneity trade-off, where homogeneous models reduce task conflicts but also increase the overfitting risk. Balancing this trade-off is crucial for learning shared representations across tasks. Based on our findings, we propose Task Groupings Regularization, a novel approach that benefits from model heterogeneity by grouping and aligning conflicting tasks. Specifically, we embed pre-trained models into a task space to compute dissimilarity, and group heterogeneous models together based on this measure. Then, we introduce implicit gradient regularization within each group to mitigate potential conflicts. By encouraging a gradient direction suitable for all tasks, the meta-model captures shared representations that generalize across tasks. Comprehensive experiments showcase the superiority of our approach in multiple benchmarks, effectively tackling the model heterogeneity in challenging multi-domain and multi-architecture scenarios.
Abstract:Data-Free Meta-Learning (DFML) aims to extract knowledge from a collection of pre-trained models without requiring the original data, presenting practical benefits in contexts constrained by data privacy concerns. Current DFML methods primarily focus on the data recovery from these pre-trained models. However, they suffer from slow recovery speed and overlook gaps inherent in heterogeneous pre-trained models. In response to these challenges, we introduce the Faster and Better Data-Free Meta-Learning (FREE) framework, which contains: (i) a meta-generator for rapidly recovering training tasks from pre-trained models; and (ii) a meta-learner for generalizing to new unseen tasks. Specifically, within the module Faster Inversion via Meta-Generator, each pre-trained model is perceived as a distinct task. The meta-generator can rapidly adapt to a specific task in just five steps, significantly accelerating the data recovery. Furthermore, we propose Better Generalization via Meta-Learner and introduce an implicit gradient alignment algorithm to optimize the meta-learner. This is achieved as aligned gradient directions alleviate potential conflicts among tasks from heterogeneous pre-trained models. Empirical experiments on multiple benchmarks affirm the superiority of our approach, marking a notable speed-up (20$\times$) and performance enhancement (1.42\% $\sim$ 4.78\%) in comparison to the state-of-the-art.




Abstract:Few-Shot Class-Incremental Learning (FSCIL) models aim to incrementally learn new classes with scarce samples while preserving knowledge of old ones. Existing FSCIL methods usually fine-tune the entire backbone, leading to overfitting and hindering the potential to learn new classes. On the other hand, recent prompt-based CIL approaches alleviate forgetting by training prompts with sufficient data in each task. In this work, we propose a novel framework named Attention-aware Self-adaptive Prompt (ASP). ASP encourages task-invariant prompts to capture shared knowledge by reducing specific information from the attention aspect. Additionally, self-adaptive task-specific prompts in ASP provide specific information and transfer knowledge from old classes to new classes with an Information Bottleneck learning objective. In summary, ASP prevents overfitting on base task and does not require enormous data in few-shot incremental tasks. Extensive experiments on three benchmark datasets validate that ASP consistently outperforms state-of-the-art FSCIL and prompt-based CIL methods in terms of both learning new classes and mitigating forgetting.
Abstract:Continual Learning (CL) focuses on learning from dynamic and changing data distributions while retaining previously acquired knowledge. Various methods have been developed to address the challenge of catastrophic forgetting, including regularization-based, Bayesian-based, and memory-replay-based techniques. However, these methods lack a unified framework and common terminology for describing their approaches. This research aims to bridge this gap by introducing a comprehensive and overarching framework that encompasses and reconciles these existing methodologies. Notably, this new framework is capable of encompassing established CL approaches as special instances within a unified and general optimization objective. An intriguing finding is that despite their diverse origins, these methods share common mathematical structures. This observation highlights the compatibility of these seemingly distinct techniques, revealing their interconnectedness through a shared underlying optimization objective. Moreover, the proposed general framework introduces an innovative concept called refresh learning, specifically designed to enhance the CL performance. This novel approach draws inspiration from neuroscience, where the human brain often sheds outdated information to improve the retention of crucial knowledge and facilitate the acquisition of new information. In essence, refresh learning operates by initially unlearning current data and subsequently relearning it. It serves as a versatile plug-in that seamlessly integrates with existing CL methods, offering an adaptable and effective enhancement to the learning process. Extensive experiments on CL benchmarks and theoretical analysis demonstrate the effectiveness of the proposed refresh learning. Code is available at \url{https://github.com/joey-wang123/CL-refresh-learning}.




Abstract:Multi-task learning (MTL) compresses the information from multiple tasks into a unified backbone to improve computational efficiency and generalization. Recent work directly merges multiple independently trained models to perform MTL instead of collecting their raw data for joint training, greatly expanding the application scenarios of MTL. However, by visualizing the representation distribution of existing model merging schemes, we find that the merged model often suffers from the dilemma of representation bias. That is, there is a significant discrepancy in the representation distribution between the merged and individual models, resulting in poor performance of merged MTL. In this paper, we propose a representation surgery solution called "Surgery" to reduce representation bias in the merged model. Specifically, Surgery is a lightweight task-specific module that takes the representation of the merged model as input and attempts to output the biases contained in the representation from the merged model. We then designed an unsupervised optimization objective that updates the Surgery module by minimizing the distance between the merged model's representation and the individual model's representation. Extensive experiments demonstrate significant MTL performance improvements when our Surgery module is applied to state-of-the-art (SOTA) model merging schemes.