This paper introduces JaxPruner, an open-source JAX-based pruning and sparse training library for machine learning research. JaxPruner aims to accelerate research on sparse neural networks by providing concise implementations of popular pruning and sparse training algorithms with minimal memory and latency overhead. Algorithms implemented in JaxPruner use a common API and work seamlessly with the popular optimization library Optax, which, in turn, enables easy integration with existing JAX based libraries. We demonstrate this ease of integration by providing examples in four different codebases: Scenic, t5x, Dopamine and FedJAX and provide baseline experiments on popular benchmarks.
Bayesian Neural Networks (BNNs) that possess a property of uncertainty estimation have been increasingly adopted in a wide range of safety-critical AI applications which demand reliable and robust decision making, e.g., self-driving, rescue robots, medical image diagnosis. The training procedure of a probabilistic BNN model involves training an ensemble of sampled DNN models, which induces orders of magnitude larger volume of data movement than training a single DNN model. In this paper, we reveal that the root cause for BNN training inefficiency originates from the massive off-chip data transfer by Gaussian Random Variables (GRVs). To tackle this challenge, we propose a novel design that eliminates all the off-chip data transfer by GRVs through the reversed shifting of Linear Feedback Shift Registers (LFSRs) without incurring any training accuracy loss. To efficiently support our LFSR reversion strategy at the hardware level, we explore the design space of the current DNN accelerators and identify the optimal computation mapping scheme to best accommodate our strategy. By leveraging this finding, we design and prototype the first highly efficient BNN training accelerator, named Shift-BNN, that is low-cost and scalable. Extensive evaluation on five representative BNN models demonstrates that Shift-BNN achieves an average of 4.9x (up to 10.8x) boost in energy efficiency and 1.6x (up to 2.8x) speedup over the baseline DNN training accelerator.
The quest for determinism in machine learning has disproportionately focused on characterizing the impact of noise introduced by algorithmic design choices. In this work, we address a less well understood and studied question: how does our choice of tooling introduce randomness to deep neural network training. We conduct large scale experiments across different types of hardware, accelerators, state of art networks, and open-source datasets, to characterize how tooling choices contribute to the level of non-determinism in a system, the impact of said non-determinism, and the cost of eliminating different sources of noise. Our findings are surprising, and suggest that the impact of non-determinism in nuanced. While top-line metrics such as top-1 accuracy are not noticeably impacted, model performance on certain parts of the data distribution is far more sensitive to the introduction of randomness. Our results suggest that deterministic tooling is critical for AI safety. However, we also find that the cost of ensuring determinism varies dramatically between neural network architectures and hardware types, e.g., with overhead up to $746\%$, $241\%$, and $196\%$ on a spectrum of widely used GPU accelerator architectures, relative to non-deterministic training. The source code used in this paper is available at https://github.com/usyd-fsalab/NeuralNetworkRandomness.
The abundant semi-structured data on the Web, such as HTML-based tables and lists, provide commercial search engines a rich information source for question answering (QA). Different from plain text passages in Web documents, Web tables and lists have inherent structures, which carry semantic correlations among various elements in tables and lists. Many existing studies treat tables and lists as flat documents with pieces of text and do not make good use of semantic information hidden in structures. In this paper, we propose a novel graph representation of Web tables and lists based on a systematic categorization of the components in semi-structured data as well as their relations. We also develop pre-training and reasoning techniques on the graph model for the QA task. Extensive experiments on several real datasets collected from a commercial engine verify the effectiveness of our approach. Our method improves F1 score by 3.90 points over the state-of-the-art baselines.
Clinical trials are essential for drug development but often suffer from expensive, inaccurate and insufficient patient recruitment. The core problem of patient-trial matching is to find qualified patients for a trial, where patient information is stored in electronic health records (EHR) while trial eligibility criteria (EC) are described in text documents available on the web. How to represent longitudinal patient EHR? How to extract complex logical rules from EC? Most existing works rely on manual rule-based extraction, which is time consuming and inflexible for complex inference. To address these challenges, we proposed DeepEnroll, a cross-modal inference learning model to jointly encode enrollment criteria (text) and patients records (tabular data) into a shared latent space for matching inference. DeepEnroll applies a pre-trained Bidirectional Encoder Representations from Transformers(BERT) model to encode clinical trial information into sentence embedding. And uses a hierarchical embedding model to represent patient longitudinal EHR. In addition, DeepEnroll is augmented by a numerical information embedding and entailment module to reason over numerical information in both EC and EHR. These encoders are trained jointly to optimize patient-trial matching score. We evaluated DeepEnroll on the trial-patient matching task with demonstrated on real world datasets. DeepEnroll outperformed the best baseline by up to 12.4% in average F1.
In recent years, the CNNs have achieved great successes in the image processing tasks, e.g., image recognition and object detection. Unfortunately, traditional CNN's classification is found to be easily misled by increasingly complex image features due to the usage of pooling operations, hence unable to preserve accurate position and pose information of the objects. To address this challenge, a novel neural network structure called Capsule Network has been proposed, which introduces equivariance through capsules to significantly enhance the learning ability for image segmentation and object detection. Due to its requirement of performing a high volume of matrix operations, CapsNets have been generally accelerated on modern GPU platforms that provide highly optimized software library for common deep learning tasks. However, based on our performance characterization on modern GPUs, CapsNets exhibit low efficiency due to the special program and execution features of their routing procedure, including massive unshareable intermediate variables and intensive synchronizations, which are very difficult to optimize at software level. To address these challenges, we propose a hybrid computing architecture design named \textit{PIM-CapsNet}. It preserves GPU's on-chip computing capability for accelerating CNN types of layers in CapsNet, while pipelining with an off-chip in-memory acceleration solution that effectively tackles routing procedure's inefficiency by leveraging the processing-in-memory capability of today's 3D stacked memory. Using routing procedure's inherent parallellization feature, our design enables hierarchical improvements on CapsNet inference efficiency through minimizing data movement and maximizing parallel processing in memory.