Previous entity disambiguation (ED) methods adopt a discriminative paradigm, where prediction is made based on matching scores between mention context and candidate entities using length-limited encoders. However, these methods often struggle to capture explicit discourse-level dependencies, resulting in incoherent predictions at the abstract level (e.g. topic or category). We propose CoherentED, an ED system equipped with novel designs aimed at enhancing the coherence of entity predictions. Our method first introduces an unsupervised variational autoencoder (VAE) to extract latent topic vectors of context sentences. This approach not only allows the encoder to handle longer documents more effectively, conserves valuable input space, but also keeps a topic-level coherence. Additionally, we incorporate an external category memory, enabling the system to retrieve relevant categories for undecided mentions. By employing step-by-step entity decisions, this design facilitates the modeling of entity-entity interactions, thereby maintaining maximum coherence at the category level. We achieve new state-of-the-art results on popular ED benchmarks, with an average improvement of 1.3 F1 points. Our model demonstrates particularly outstanding performance on challenging long-text scenarios.
Generative approaches powered by large language models (LLMs) have demonstrated emergent abilities in tasks that require complex reasoning abilities. Yet the generative nature still makes the generated content suffer from hallucinations, thus unsuitable for entity-centric tasks like entity linking (EL) requiring precise entity predictions over a large knowledge base. We present Instructed Generative Entity Linker (INSGENEL), the first approach that enables casual language models to perform entity linking over knowledge bases. Several methods to equip language models with EL capability were proposed in this work, including (i) a sequence-to-sequence training EL objective with instruction-tuning, (ii) a novel generative EL framework based on a light-weight potential mention retriever that frees the model from heavy and non-parallelizable decoding, achieving 4$\times$ speedup without compromise on linking metrics. INSGENEL outperforms previous generative alternatives with +6.8 F1 points gain on average, also with a huge advantage in training data efficiency and training compute consumption. In addition, our skillfully engineered in-context learning (ICL) framework for EL still lags behind INSGENEL significantly, reaffirming that the EL task remains a persistent hurdle for general LLMs.
Online recommender systems (RS) aim to match user needs with the vast amount of resources available on various platforms. A key challenge is to model user preferences accurately under the condition of data sparsity. To address this challenge, some methods have leveraged external user behavior data from multiple platforms to enrich user representation. However, all of these methods require a consistent user ID across platforms and ignore the information from similar users. In this study, we propose RUEL, a novel retrieval-based sequential recommender that can effectively incorporate external anonymous user behavior data from Edge browser logs to enhance recommendation. We first collect and preprocess a large volume of Edge browser logs over a one-year period and link them to target entities that correspond to candidate items in recommendation datasets. We then design a contrastive learning framework with a momentum encoder and a memory bank to retrieve the most relevant and diverse browsing sequences from the full browsing log based on the semantic similarity between user representations. After retrieval, we apply an item-level attentive selector to filter out noisy items and generate refined sequence embeddings for the final predictor. RUEL is the first method that connects user browsing data with typical recommendation datasets and can be generalized to various recommendation scenarios and datasets. We conduct extensive experiments on four real datasets for sequential recommendation tasks and demonstrate that RUEL significantly outperforms state-of-the-art baselines. We also conduct ablation studies and qualitative analysis to validate the effectiveness of each component of RUEL and provide additional insights into our method.
Multi-party collaborative training, such as distributed learning and federated learning, is used to address the big data challenges. However, traditional multi-party collaborative training algorithms were mainly designed for balanced data mining tasks and are intended to optimize accuracy (\emph{e.g.}, cross-entropy). The data distribution in many real-world applications is skewed and classifiers, which are trained to improve accuracy, perform poorly when applied to imbalanced data tasks since models could be significantly biased toward the primary class. Therefore, the Area Under Precision-Recall Curve (AUPRC) was introduced as an effective metric. Although single-machine AUPRC maximization methods have been designed, multi-party collaborative algorithm has never been studied. The change from the single-machine to the multi-party setting poses critical challenges. To address the above challenge, we study the serverless multi-party collaborative AUPRC maximization problem since serverless multi-party collaborative training can cut down the communications cost by avoiding the server node bottleneck, and reformulate it as a conditional stochastic optimization problem in a serverless multi-party collaborative learning setting and propose a new ServerLess biAsed sTochastic gradiEnt (SLATE) algorithm to directly optimize the AUPRC. After that, we use the variance reduction technique and propose ServerLess biAsed sTochastic gradiEnt with Momentum-based variance reduction (SLATE-M) algorithm to improve the convergence rate, which matches the best theoretical convergence result reached by the single-machine online method. To the best of our knowledge, this is the first work to solve the multi-party collaborative AUPRC maximization problem.
Currently, learning better unsupervised sentence representations is the pursuit of many natural language processing communities. Lots of approaches based on pre-trained language models (PLMs) and contrastive learning have achieved promising results on this task. Experimentally, we observe that the over-smoothing problem reduces the capacity of these powerful PLMs, leading to sub-optimal sentence representations. In this paper, we present a Simple method named Self-Contrastive Learning (SSCL) to alleviate this issue, which samples negatives from PLMs intermediate layers, improving the quality of the sentence representation. Our proposed method is quite simple and can be easily extended to various state-of-the-art models for performance boosting, which can be seen as a plug-and-play contrastive framework for learning unsupervised sentence representation. Extensive results prove that SSCL brings the superior performance improvements of different strong baselines (e.g., BERT and SimCSE) on Semantic Textual Similarity and Transfer datasets. Our codes are available at https://github.com/nuochenpku/SSCL.
Current dense retrievers (DRs) are limited in their ability to effectively process misspelled queries, which constitute a significant portion of query traffic in commercial search engines. The main issue is that the pre-trained language model-based encoders used by DRs are typically trained and fine-tuned using clean, well-curated text data. Misspelled queries are typically not found in the data used for training these models, and thus misspelled queries observed at inference time are out-of-distribution compared to the data used for training and fine-tuning. Previous efforts to address this issue have focused on \textit{fine-tuning} strategies, but their effectiveness on misspelled queries remains lower than that of pipelines that employ separate state-of-the-art spell-checking components. To address this challenge, we propose ToRoDer (TypOs-aware bottlenecked pre-training for RObust DEnse Retrieval), a novel \textit{pre-training} strategy for DRs that increases their robustness to misspelled queries while preserving their effectiveness in downstream retrieval tasks. ToRoDer utilizes an encoder-decoder architecture where the encoder takes misspelled text with masked tokens as input and outputs bottlenecked information to the decoder. The decoder then takes as input the bottlenecked embeddings, along with token embeddings of the original text with the misspelled tokens masked out. The pre-training task is to recover the masked tokens for both the encoder and decoder. Our extensive experimental results and detailed ablation studies show that DRs pre-trained with ToRoDer exhibit significantly higher effectiveness on misspelled queries, sensibly closing the gap with pipelines that use a separate, complex spell-checker component, while retaining their effectiveness on correctly spelled queries.
Recent multilingual pre-trained models have shown better performance in various multilingual tasks. However, these models perform poorly on multilingual retrieval tasks due to lacking multilingual training data. In this paper, we propose to mine and generate self-supervised training data based on a large-scale unlabeled corpus. We carefully design a mining method which combines the sparse and dense models to mine the relevance of unlabeled queries and passages. And we introduce a query generator to generate more queries in target languages for unlabeled passages. Through extensive experiments on Mr. TYDI dataset and an industrial dataset from a commercial search engine, we demonstrate that our method performs better than baselines based on various pre-trained multilingual models. Our method even achieves on-par performance with the supervised method on the latter dataset.
Social recommender systems have drawn a lot of attention in many online web services, because of the incorporation of social information between users in improving recommendation results. Despite the significant progress made by existing solutions, we argue that current methods fall short in two limitations: (1) Existing social-aware recommendation models only consider collaborative similarity between items, how to incorporate item-wise semantic relatedness is less explored in current recommendation paradigms. (2) Current social recommender systems neglect the entanglement of the latent factors over heterogeneous relations (e.g., social connections, user-item interactions). Learning the disentangled representations with relation heterogeneity poses great challenge for social recommendation. In this work, we design a Disentangled Graph Neural Network (DGNN) with the integration of latent memory units, which empowers DGNN to maintain factorized representations for heterogeneous types of user and item connections. Additionally, we devise new memory-augmented message propagation and aggregation schemes under the graph neural architecture, allowing us to recursively distill semantic relatedness into the representations of users and items in a fully automatic manner. Extensive experiments on three benchmark datasets verify the effectiveness of our model by achieving great improvement over state-of-the-art recommendation techniques. The source code is publicly available at: https://github.com/HKUDS/DGNN.
The Pretrained Foundation Models (PFMs) are regarded as the foundation for various downstream tasks with different data modalities. A pretrained foundation model, such as BERT, GPT-3, MAE, DALLE-E, and ChatGPT, is trained on large-scale data which provides a reasonable parameter initialization for a wide range of downstream applications. The idea of pretraining behind PFMs plays an important role in the application of large models. Different from previous methods that apply convolution and recurrent modules for feature extractions, the generative pre-training (GPT) method applies Transformer as the feature extractor and is trained on large datasets with an autoregressive paradigm. Similarly, the BERT apples transformers to train on large datasets as a contextual language model. Recently, the ChatGPT shows promising success on large language models, which applies an autoregressive language model with zero shot or few show prompting. With the extraordinary success of PFMs, AI has made waves in a variety of fields over the past few years. Considerable methods, datasets, and evaluation metrics have been proposed in the literature, the need is raising for an updated survey. This study provides a comprehensive review of recent research advancements, current and future challenges, and opportunities for PFMs in text, image, graph, as well as other data modalities. We first review the basic components and existing pretraining in natural language processing, computer vision, and graph learning. We then discuss other advanced PFMs for other data modalities and unified PFMs considering the data quality and quantity. Besides, we discuss relevant research about the fundamentals of the PFM, including model efficiency and compression, security, and privacy. Finally, we lay out key implications, future research directions, challenges, and open problems.
Table pretrain-then-finetune paradigm has been proposed and employed at a rapid pace after the success of pre-training in the natural language domain. Despite the promising findings in tabular pre-trained language models (TPLMs), there is an input gap between pre-training and fine-tuning phases. For instance, TPLMs jointly pre-trained with table and text input could be effective for tasks also with table-text joint input like table question answering, but it may fail for tasks with only tables or text as input such as table retrieval. To this end, we propose UTP, an approach that dynamically supports three types of multi-modal inputs: table-text, table, and text. Specifically, UTP is pre-trained with two strategies: (1) We first utilize a universal mask language modeling objective on each kind of input, enforcing the model to adapt various inputs. (2) We then present Cross-Modal Contrastive Regularization (CMCR), which utilizes contrastive learning to encourage the consistency between table-text cross-modality representations via unsupervised instance-wise training signals during pre-training. By these means, the resulting model not only bridges the input gap between pre-training and fine-tuning but also advances in the alignment of table and text. Extensive results show UTP achieves superior results on uni-modal input tasks (e.g., table retrieval) and cross-modal input tasks (e.g., table question answering).