EURECOM
Abstract:Binary Neural Networks (BiNNs), which employ single-bit precision weights, have emerged as a promising solution to reduce memory usage and power consumption while maintaining competitive performance in large-scale systems. However, training BiNNs remains a significant challenge due to the limitations of conventional training algorithms. Quantum HyperNetworks offer a novel paradigm for enhancing the optimization of BiNN by leveraging quantum computing. Specifically, a Variational Quantum Algorithm is employed to generate binary weights through quantum circuit measurements, while key quantum phenomena such as superposition and entanglement facilitate the exploration of a broader solution space. In this work, we establish a connection between this approach and Bayesian inference by deriving the Evidence Lower Bound (ELBO), when direct access to the output distribution is available (i.e., in simulations), and introducing a surrogate ELBO based on the Maximum Mean Discrepancy (MMD) metric for scenarios involving implicit distributions, as commonly encountered in practice. Our experimental results demonstrate that the proposed methods outperform standard Maximum Likelihood Estimation (MLE), improving trainability and generalization.
Abstract:The problem of resource allocation in goal-oriented semantic communication with semantic-aware utilities and subjective risk perception is studied here. By linking information importance to risk aversion, we model agent behavior using Cumulative Prospect Theory (CPT), which incorporates risk-sensitive utility functions and nonlinear transformations of distributions, reflecting subjective perceptions of gains and losses. The objective is to maximize the aggregate utility across multiple CPT-modeled agents, which leads to a nonconvex, nonsmooth optimization problem. To efficiently solve this challenging problem, we propose a new algorithmic framework that combines successive convex approximation (SCA) with the projected subgradient method and Lagrangian relaxation, Our approach enables tractable optimization while preserving solution quality, offering both theoretical rigor and practical effectiveness in semantics-aware resource allocation.
Abstract:We introduce a resource allocation framework for goal-oriented semantic networks, where participating agents assess system quality through subjective (e.g., context-dependent) perceptions. To accommodate this, our model accounts for agents whose preferences deviate from traditional expected utility theory (EUT), specifically incorporating cumulative prospect theory (CPT) preferences. We develop a comprehensive analytical framework that captures human-centric aspects of decision-making and risky choices under uncertainty, such as risk perception, loss aversion, and perceptual distortions in probability metrics. By identifying essential modifications in traditional resource allocation design principles required for agents with CPT preferences, we showcase the framework's relevance through its application to the problem of power allocation in multi-channel wireless communication systems.
Abstract:This work introduces a novel methodology for assessing catastrophic forgetting (CF) in continual learning. We propose a new conformal prediction (CP)-based metric, termed the Conformal Prediction Confidence Factor (CPCF), to quantify and evaluate CF effectively. Our framework leverages adaptive CP to estimate forgetting by monitoring the model's confidence on previously learned tasks. This approach provides a dynamic and practical solution for monitoring and measuring CF of previous tasks as new ones are introduced, offering greater suitability for real-world applications. Experimental results on four benchmark datasets demonstrate a strong correlation between CPCF and the accuracy of previous tasks, validating the reliability and interpretability of the proposed metric. Our results highlight the potential of CPCF as a robust and effective tool for assessing and understanding CF in dynamic learning environments.
Abstract:This paper addresses query scheduling for goal-oriented semantic communication in pull-based status update systems. We consider a system where multiple sensing agents (SAs) observe a source characterized by various attributes and provide updates to multiple actuation agents (AAs), which act upon the received information to fulfill their heterogeneous goals at the endpoint. A hub serves as an intermediary, querying the SAs for updates on observed attributes and maintaining a knowledge base, which is then broadcast to the AAs. The AAs leverage the knowledge to perform their actions effectively. To quantify the semantic value of updates, we introduce a grade of effectiveness (GoE) metric. Furthermore, we integrate cumulative perspective theory (CPT) into the long-term effectiveness analysis to account for risk awareness and loss aversion in the system. Leveraging this framework, we compute effect-aware scheduling policies aimed at maximizing the expected discounted sum of CPT-based total GoE provided by the transmitted updates while complying with a given query cost constraint. To achieve this, we propose a model-based solution based on dynamic programming and model-free solutions employing state-of-the-art deep reinforcement learning (DRL) algorithms. Our findings demonstrate that effect-aware scheduling significantly enhances the effectiveness of communicated updates compared to benchmark scheduling methods, particularly in settings with stringent cost constraints where optimal query scheduling is vital for system performance and overall effectiveness.
Abstract:This white paper discusses the role of large-scale AI in the telecommunications industry, with a specific focus on the potential of generative AI to revolutionize network functions and user experiences, especially in the context of 6G systems. It highlights the development and deployment of Large Telecom Models (LTMs), which are tailored AI models designed to address the complex challenges faced by modern telecom networks. The paper covers a wide range of topics, from the architecture and deployment strategies of LTMs to their applications in network management, resource allocation, and optimization. It also explores the regulatory, ethical, and standardization considerations for LTMs, offering insights into their future integration into telecom infrastructure. The goal is to provide a comprehensive roadmap for the adoption of LTMs to enhance scalability, performance, and user-centric innovation in telecom networks.
Abstract:Next-generation wireless networks are conceived to provide reliable and high-data-rate communication services for diverse scenarios, such as vehicle-to-vehicle, unmanned aerial vehicles, and satellite networks. The severe Doppler spreads in the underlying time-varying channels induce destructive inter-carrier interference (ICI) in the extensively adopted orthogonal frequency division multiplexing (OFDM) waveform, leading to severe performance degradation. This calls for a new air interface design that can accommodate the severe delay-Doppler spreads in highly dynamic channels while possessing sufficient flexibility to cater to various applications. This article provides a comprehensive overview of a promising chirp-based waveform named affine frequency division multiplexing (AFDM). It is featured with two tunable parameters and achieves optimal diversity order in doubly dispersive channels (DDC). We study the fundamental principle of AFDM, illustrating its intrinsic suitability for DDC. Based on that, several potential applications of AFDM are explored. Furthermore, the major challenges and the corresponding solutions of AFDM are presented, followed by several future research directions. Finally, we draw some instructive conclusions about AFDM, hoping to provide useful inspiration for its development.
Abstract:In this work, we investigate low-complexity remote system state estimation over wireless multiple-input-multiple-output (MIMO) channels without requiring prior knowledge of channel state information (CSI). We start by reviewing the conventional Kalman filtering-based state estimation algorithm, which typically relies on perfect CSI and incurs considerable computational complexity. To overcome the need for CSI, we introduce a novel semantic aggregation method, in which sensors transmit semantic measurement discrepancies to the remote state estimator through analog aggregation. To further reduce computational complexity, we introduce a constant-gain-based filtering algorithm that can be optimized offline using the constrained stochastic successive convex approximation (CSSCA) method. We derive a closed-form sufficient condition for the estimation stability of our proposed scheme via Lyapunov drift analysis. Numerical results showcase significant performance gains using the proposed scheme compared to several widely used methods.
Abstract:In this work, we study the problem of aggregation in the context of Bayesian Federated Learning (BFL). Using an information geometric perspective, we interpret the BFL aggregation step as finding the barycenter of the trained posteriors for a pre-specified divergence metric. We study the barycenter problem for the parametric family of $\alpha$-divergences and, focusing on the standard case of independent and Gaussian distributed parameters, we recover the closed-form solution of the reverse Kullback-Leibler barycenter and develop the analytical form of the squared Wasserstein-2 barycenter. Considering a non-IID setup, where clients possess heterogeneous data, we analyze the performance of the developed algorithms against state-of-the-art (SOTA) Bayesian aggregation methods in terms of accuracy, uncertainty quantification (UQ), model calibration (MC), and fairness. Finally, we extend our analysis to the framework of Hybrid Bayesian Deep Learning (HBDL), where we study how the number of Bayesian layers in the architecture impacts the considered performance metrics. Our experimental results show that the proposed methodology presents comparable performance with the SOTA while offering a geometric interpretation of the aggregation phase.
Abstract:We study the computation of the rate-distortion-perception function (RDPF) for discrete memoryless sources subject to a single-letter average distortion constraint and a perception constraint that belongs to the family of $f$-divergences. In this setting, the RDPF forms a convex programming problem for which we characterize the optimal parametric solutions. We employ the developed solutions in an alternating minimization scheme, namely Optimal Alternating Minimization (OAM), for which we provide convergence guarantees. Nevertheless, the OAM scheme does not lead to a direct implementation of a generalized Blahut-Arimoto (BA) type of algorithm due to the presence of implicit equations in the structure of the iteration. To overcome this difficulty, we propose two alternative minimization approaches whose applicability depends on the smoothness of the used perception metric: a Newton-based Alternating Minimization (NAM) scheme, relying on Newton's root-finding method for the approximation of the optimal iteration solution, and a Relaxed Alternating Minimization (RAM) scheme, based on a relaxation of the OAM iterates. Both schemes are shown, via the derivation of necessary and sufficient conditions, to guarantee convergence to a globally optimal solution. We also provide sufficient conditions on the distortion and the perception constraints which guarantee that the proposed algorithms converge exponentially fast in the number of iteration steps. We corroborate our theoretical results with numerical simulations and draw connections with existing results.