Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

Variational Reasoning over Incomplete Knowledge Graphs for Conversational Recommendation


Dec 23, 2022
Xiaoyu Zhang, Xin Xin, Dongdong Li, Wenxuan Liu, Pengjie Ren, Zhumin Chen, Jun Ma, Zhaochun Ren

Add code


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

On the User Behavior Leakage from Recommender Exposure


Oct 16, 2022
Xin Xin, Jiyuan Yang, Hanbing Wang, Jun Ma, Pengjie Ren, Hengliang Luo, Xinlei Shi, Zhumin Chen, Zhaochun Ren

Add code


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Rethinking Reinforcement Learning for Recommendation: A Prompt Perspective


Jun 15, 2022
Xin Xin, Tiago Pimentel, Alexandros Karatzoglou, Pengjie Ren, Konstantina Christakopoulou, Zhaochun Ren

Add code


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

GDSRec: Graph-Based Decentralized Collaborative Filtering for Social Recommendation


May 20, 2022
Jiajia Chen, Xin Xin, Xianfeng Liang, Xiangnan He, Jun Liu

Add code

* Accepted by IEEE Transactions on Knowledge and Data Engineering 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Supervised Advantage Actor-Critic for Recommender Systems


Nov 05, 2021
Xin Xin, Alexandros Karatzoglou, Ioannis Arapakis, Joemon M. Jose

Add code

* 9 pages, 4 figures, In Proceedings of the 15th ACM International Conference on Web Search and Data Mining (WSDM '22), February 21-25, 2022, Phoenix, Arizona. arXiv admin note: text overlap with arXiv:2006.05779 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Choosing the Best of Both Worlds: Diverse and Novel Recommendations through Multi-Objective Reinforcement Learning


Oct 28, 2021
Dusan Stamenkovic, Alexandros Karatzoglou, Ioannis Arapakis, Xin Xin, Kleomenis Katevas

Add code

* 9 pages, 4 figures, Proc. ACM WSDM, 2022 In Proceedings of the 15th ACM International Conference on Web Search and Data Mining (WSDM '22), February 21-25, 2022, Phoenix, Arizona 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Extracting Attentive Social Temporal Excitation for Sequential Recommendation


Sep 28, 2021
Yunzhe Li, Yue Ding, Bo Chen, Xin Xin, Yule Wang, Yuxiang Shi, Ruiming Tang, Dong Wang

Add code

* Accepted by CIKM 2021 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

ICMT: Item Cluster-Wise Multi-Objective Training for Long-Tail Recommendation


Sep 27, 2021
Yule Wang, Xin Xin, Yue Ding, Dong Wang

Add code


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Probabilistic and Variational Recommendation Denoising


May 20, 2021
Yu Wang, Xin Xin, Zaiqiao Meng, Xiangnan He, Joemon Jose, Fuli Feng

Add code

* 13 pages, 17 figures 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

AutoDebias: Learning to Debias for Recommendation


May 10, 2021
Jiawei Chen, Hande Dong, Yang Qiu, Xiangnan He, Xin Xin, Liang Chen, Guli Lin, Keping Yang

Add code

* Accepted by SIGIR 2021 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email
1
2
>>