Abstract:Vision-language-action models have gained significant attention for their ability to model trajectories in robot learning. However, most existing models rely on Transformer models with vanilla causal attention, which we find suboptimal for processing segmented multi-modal sequences. Additionally, the autoregressive generation approach falls short in generating multi-dimensional actions. In this paper, we introduce Actra, an optimized Transformer architecture featuring trajectory attention and learnable action queries, designed for effective encoding and decoding of segmented vision-language-action trajectories in robot imitation learning. Furthermore, we devise a multi-modal contrastive learning objective to explicitly align different modalities, complementing the primary behavior cloning objective. Through extensive experiments conducted across various environments, Actra exhibits substantial performance improvement when compared to state-of-the-art models in terms of generalizability, dexterity, and precision.
Abstract:Exclusion is an important and universal linguistic skill that humans use to express what they do not want. However, in information retrieval community, there is little research on exclusionary retrieval, where users express what they do not want in their queries. In this work, we investigate the scenario of exclusionary retrieval in document retrieval for the first time. We present ExcluIR, a set of resources for exclusionary retrieval, consisting of an evaluation benchmark and a training set for helping retrieval models to comprehend exclusionary queries. The evaluation benchmark includes 3,452 high-quality exclusionary queries, each of which has been manually annotated. The training set contains 70,293 exclusionary queries, each paired with a positive document and a negative document. We conduct detailed experiments and analyses, obtaining three main observations: (1) Existing retrieval models with different architectures struggle to effectively comprehend exclusionary queries; (2) Although integrating our training data can improve the performance of retrieval models on exclusionary retrieval, there still exists a gap compared to human performance; (3) Generative retrieval models have a natural advantage in handling exclusionary queries. To facilitate future research on exclusionary retrieval, we share the benchmark and evaluation scripts on \url{https://github.com/zwh-sdu/ExcluIR}.
Abstract:Generative retrieval generates identifiers of relevant documents in an end-to-end manner using a sequence-to-sequence architecture for a given query. The relation between generative retrieval and other retrieval methods, especially those based on matching within dense retrieval models, is not yet fully comprehended. Prior work has demonstrated that generative retrieval with atomic identifiers is equivalent to single-vector dense retrieval. Accordingly, generative retrieval exhibits behavior analogous to hierarchical search within a tree index in dense retrieval when using hierarchical semantic identifiers. However, prior work focuses solely on the retrieval stage without considering the deep interactions within the decoder of generative retrieval. In this paper, we fill this gap by demonstrating that generative retrieval and multi-vector dense retrieval share the same framework for measuring the relevance to a query of a document. Specifically, we examine the attention layer and prediction head of generative retrieval, revealing that generative retrieval can be understood as a special case of multi-vector dense retrieval. Both methods compute relevance as a sum of products of query and document vectors and an alignment matrix. We then explore how generative retrieval applies this framework, employing distinct strategies for computing document token vectors and the alignment matrix. We have conducted experiments to verify our conclusions and show that both paradigms exhibit commonalities of term matching in their alignment matrix.
Abstract:3D articulated objects are inherently challenging for manipulation due to the varied geometries and intricate functionalities associated with articulated objects.Point-level affordance, which predicts the per-point actionable score and thus proposes the best point to interact with, has demonstrated excellent performance and generalization capabilities in articulated object manipulation. However, a significant challenge remains: while previous works use perfect point cloud generated in simulation, the models cannot directly apply to the noisy point cloud in the real-world. To tackle this challenge, we leverage the property of real-world scanned point cloud that, the point cloud becomes less noisy when the camera is closer to the object. Therefore, we propose a novel coarse-to-fine affordance learning pipeline to mitigate the effect of point cloud noise in two stages. In the first stage, we learn the affordance on the noisy far point cloud which includes the whole object to propose the approximated place to manipulate. Then, we move the camera in front of the approximated place, scan a less noisy point cloud containing precise local geometries for manipulation, and learn affordance on such point cloud to propose fine-grained final actions. The proposed method is thoroughly evaluated both using large-scale simulated noisy point clouds mimicking real-world scans, and in the real world scenarios, with superiority over existing methods, demonstrating the effectiveness in tackling the noisy real-world point cloud problem.
Abstract:Parameter-efficient fine-tuning (PEFT) is a popular method for tailoring pre-trained large language models (LLMs), especially as the models' scale and the diversity of tasks increase. Low-rank adaptation (LoRA) is based on the idea that the adaptation process is intrinsically low-dimensional, i.e., significant model changes can be represented with relatively few parameters. However, decreasing the rank encounters challenges with generalization errors for specific tasks when compared to full-parameter fine-tuning. We present MELoRA, a mini-ensemble low-rank adapters that uses fewer trainable parameters while maintaining a higher rank, thereby offering improved performance potential. The core idea is to freeze original pretrained weights and train a group of mini LoRAs with only a small number of parameters. This can capture a significant degree of diversity among mini LoRAs, thus promoting better generalization ability. We conduct a theoretical analysis and empirical studies on various NLP tasks. Our experimental results show that, compared to LoRA, MELoRA achieves better performance with 8 times fewer trainable parameters on natural language understanding tasks and 36 times fewer trainable parameters on instruction following tasks, which demonstrates the effectiveness of MELoRA.
Abstract:Sequential recommenders that are trained on implicit feedback are usually learned as a multi-class classification task through softmax-based loss functions on one-hot class labels. However, one-hot training labels are sparse and may lead to biased training and sub-optimal performance. Dense, soft labels have been shown to help improve recommendation performance. But how to generate high-quality and confident soft labels from noisy sequential interactions between users and items is still an open question. We propose a new learning framework for sequential recommenders, CSRec, which introduces confident soft labels to provide robust guidance when learning from user-item interactions. CSRec contains a teacher module that generates high-quality and confident soft labels and a student module that acts as the target recommender and is trained on the combination of dense, soft labels and sparse, one-hot labels. We propose and compare three approaches to constructing the teacher module: (i) model-level, (ii) data-level, and (iii) training-level. To evaluate the effectiveness and generalization ability of CSRec, we conduct experiments using various state-of-the-art sequential recommendation models as the target student module on four benchmark datasets. Our experimental results demonstrate that CSRec is effective in training better performing sequential recommenders.
Abstract:This paper studies close-loop task planning, which refers to the process of generating a sequence of skills (a plan) to accomplish a specific goal while adapting the plan based on real-time observations. Recently, prompting Large Language Models (LLMs) to generate actions iteratively has become a prevalent paradigm due to its superior performance and user-friendliness. However, this paradigm is plagued by two inefficiencies: high token consumption and redundant error correction, both of which hinder its scalability for large-scale testing and applications. To address these issues, we propose Tree-Planner, which reframes task planning with LLMs into three distinct phases: plan sampling, action tree construction, and grounded deciding. Tree-Planner starts by using an LLM to sample a set of potential plans before execution, followed by the aggregation of them to form an action tree. Finally, the LLM performs a top-down decision-making process on the tree, taking into account real-time environmental information. Experiments show that Tree-Planner achieves state-of-the-art performance while maintaining high efficiency. By decomposing LLM queries into a single plan-sampling call and multiple grounded-deciding calls, a considerable part of the prompt are less likely to be repeatedly consumed. As a result, token consumption is reduced by 92.2% compared to the previously best-performing model. Additionally, by enabling backtracking on the action tree as needed, the correction process becomes more flexible, leading to a 40.5% decrease in error corrections. Project page: https://tree-planner.github.io/
Abstract:Molecular property prediction (MPP) is important in biomedical applications, which naturally suffers from a lack of labels, thus forming a few-shot learning problem. State-of-the-art approaches are usually based on gradient-based meta learning strategy, which ignore difference in model parameter and molecule's learning difficulty. To address above problems, we propose a novel hierarchical adaptation mechanism for few-shot MPP (HiMPP). The model follows a encoder-predictor framework. First, to make molecular representation property-adaptive, we selectively adapt encoder's parameter by designing a hypernetwork to modulate node embeddings during message propagation. Next, we make molecule-level adaptation by design another hypernetwork, which assigns larger propagating steps for harder molecules in predictor. In this way, molecular representation is transformed by HiMPP hierarchically from property-level to molecular level. Extensive results show that HiMPP obtains the state-of-the-art performance in few-shot MPP problems, and our proposed hierarchical adaptation mechanism is rational and effective.
Abstract:Making personalized recommendation for cold-start users, who only have a few interaction histories, is a challenging problem in recommendation systems. Recent works leverage hypernetworks to directly map user interaction histories to user-specific parameters, which are then used to modulate predictor by feature-wise linear modulation function. These works obtain the state-of-the-art performance. However, the physical meaning of scaling and shifting in recommendation data is unclear. Instead of using a fixed modulation function and deciding modulation position by expertise, we propose a modulation framework called ColdNAS for user cold-start problem, where we look for proper modulation structure, including function and position, via neural architecture search. We design a search space which covers broad models and theoretically prove that this search space can be transformed to a much smaller space, enabling an efficient and robust one-shot search algorithm. Extensive experimental results on benchmark datasets show that ColdNAS consistently performs the best. We observe that different modulation functions lead to the best performance on different datasets, which validates the necessity of designing a searching-based method.
Abstract:Centralized Training with Decentralized Execution (CTDE) has been a very popular paradigm for multi-agent reinforcement learning. One of its main features is making full use of the global information to learn a better joint $Q$-function or centralized critic. In this paper, we in turn explore how to leverage the global information to directly learn a better individual $Q$-function or individual actor. We find that applying the same global information to all agents indiscriminately is not enough for good performance, and thus propose to specify the global information for each agent to obtain agent-specific global information for better performance. Furthermore, we distill such agent-specific global information into the agent's local information, which is used during decentralized execution without too much performance degradation. We call this new paradigm Personalized Training with Distillated Execution (PTDE). PTDE can be easily combined with many state-of-the-art algorithms to further improve their performance, which is verified in both SMAC and Google Research Football scenarios.