Abstract:Generative models are increasingly being explored in click-through rate (CTR) prediction field to overcome the limitations of the conventional discriminative paradigm, which rely on a simple binary classification objective. However, existing generative models typically confine the generative paradigm to the training phase, primarily for representation learning. During online inference, they revert to a standard discriminative paradigm, failing to leverage their powerful generative capabilities to further improve prediction accuracy. This fundamental asymmetry between the training and inference phases prevents the generative paradigm from realizing its full potential. To address this limitation, we propose the Symmetric Masked Generative Paradigm for CTR prediction (SGCTR), a novel framework that establishes symmetry between the training and inference phases. Specifically, after acquiring generative capabilities by learning feature dependencies during training, SGCTR applies the generative capabilities during online inference to iteratively redefine the features of input samples, which mitigates the impact of noisy features and enhances prediction accuracy. Extensive experiments validate the superiority of SGCTR, demonstrating that applying the generative paradigm symmetrically across both training and inference significantly unlocks its power in CTR prediction.
Abstract:The integration of large language models (LLMs) into recommendation systems has revealed promising potential through their capacity to extract world knowledge for enhanced reasoning capabilities. However, current methodologies that adopt static schema-based prompting mechanisms encounter significant limitations: (1) they employ universal template structures that neglect the multi-faceted nature of user preference diversity; (2) they implement superficial alignment between semantic knowledge representations and behavioral feature spaces without achieving comprehensive latent space integration. To address these challenges, we introduce CoCo, an end-to-end framework that dynamically constructs user-specific contextual knowledge embeddings through a dual-mechanism approach. Our method realizes profound integration of semantic and behavioral latent dimensions via adaptive knowledge fusion and contradiction resolution modules. Experimental evaluations across diverse benchmark datasets and an enterprise-level e-commerce platform demonstrate CoCo's superiority, achieving a maximum 8.58% improvement over seven cutting-edge methods in recommendation accuracy. The framework's deployment on a production advertising system resulted in a 1.91% sales growth, validating its practical effectiveness. With its modular design and model-agnostic architecture, CoCo provides a versatile solution for next-generation recommendation systems requiring both knowledge-enhanced reasoning and personalized adaptation.




Abstract:Multi-objective embedding-based retrieval (EBR) has become increasingly critical due to the growing complexity of user behaviors and commercial objectives. While traditional approaches often suffer from data sparsity and limited information sharing between objectives, recent methods utilizing a shared network alongside dedicated sub-networks for each objective partially address these limitations. However, such methods significantly increase the model parameters, leading to an increased retrieval latency and a limited ability to model causal relationships between objectives. To address these challenges, we propose the Cascaded Selective Mask Fine-Tuning (CSMF), a novel method that enhances both retrieval efficiency and serving performance for multi-objective EBR. The CSMF framework selectively masks model parameters to free up independent learning space for each objective, leveraging the cascading relationships between objectives during the sequential fine-tuning. Without increasing network parameters or online retrieval overhead, CSMF computes a linearly weighted fusion score for multiple objective probabilities while supporting flexible adjustment of each objective's weight across various recommendation scenarios. Experimental results on real-world datasets demonstrate the superior performance of CSMF, and online experiments validate its significant practical value.
Abstract:In the context of burgeoning user historical behavior data, Accurate click-through rate(CTR) prediction requires effective modeling of lengthy user behavior sequences. As the volume of such data keeps swelling, the focus of research has shifted towards developing effective long-term behavior modeling methods to capture latent user interests. Nevertheless, the complexity introduced by large scale data brings about computational hurdles. There is a pressing need to strike a balance between achieving high model performance and meeting the strict response time requirements of online services. While existing retrieval-based methods (e.g., similarity filtering or attention approximation) achieve practical runtime efficiency, they inherently compromise information fidelity through aggressive sequence truncation or attention sparsification. This paper presents a novel attention mechanism. It overcomes the shortcomings of existing methods while ensuring computational efficiency. This mechanism learn compressed representation of sequence with length $L$ via low-rank projection matrices (rank $r \ll L$), reducing attention complexity from $O(L)$ to $O(r)$. It also integrates a uniquely designed loss function to preserve nonlinearity of attention. In the inference stage, the mechanism adopts matrix absorption and prestorage strategies. These strategies enable it to effectively satisfy online constraints. Comprehensive offline and online experiments demonstrate that the proposed method outperforms current state-of-the-art solutions.




Abstract:Sequential recommendation systems leveraging transformer architectures have demonstrated exceptional capabilities in capturing user behavior patterns. At the core of these systems lies the critical challenge of constructing effective item representations. Traditional approaches employ feature fusion through simple concatenation or basic neural architectures to create uniform representation sequences. However, these conventional methods fail to address the intrinsic diversity of item attributes, thereby constraining the transformer's capacity to discern fine-grained patterns and hindering model extensibility. Although recent research has begun incorporating user-related heterogeneous features into item sequences, the equally crucial item-side heterogeneous feature continue to be neglected. To bridge this methodological gap, we present HeterRec - an innovative framework featuring two novel components: the Heterogeneous Token Flattening Layer (HTFL) and Hierarchical Causal Transformer (HCT). HTFL pioneers a sophisticated tokenization mechanism that decomposes items into multi-dimensional token sets and structures them into heterogeneous sequences, enabling scalable performance enhancement through model expansion. The HCT architecture further enhances pattern discovery through token-level and item-level attention mechanisms. furthermore, we develop a Listwise Multi-step Prediction (LMP) objective function to optimize learning process. Rigorous validation, including real-world industrial platforms, confirms HeterRec's state-of-the-art performance in both effective and efficiency.
Abstract:Industrial recommendation systems typically involve a two-stage process: retrieval and ranking, which aims to match users with millions of items. In the retrieval stage, classic embedding-based retrieval (EBR) methods depend on effective negative sampling techniques to enhance both performance and efficiency. However, existing techniques often suffer from false negatives, high cost for ensuring sampling quality and semantic information deficiency. To address these limitations, we propose Effective and Semantic-Aware Negative Sampling (ESANS), which integrates two key components: Effective Dense Interpolation Strategy (EDIS) and Multimodal Semantic-Aware Clustering (MSAC). EDIS generates virtual samples within the low-dimensional embedding space to improve the diversity and density of the sampling distribution while minimizing computational costs. MSAC refines the negative sampling distribution by hierarchically clustering item representations based on multimodal information (visual, textual, behavioral), ensuring semantic consistency and reducing false negatives. Extensive offline and online experiments demonstrate the superior efficiency and performance of ESANS.




Abstract:While neural radiance fields (NeRF) have shown promise in novel view synthesis, their implicit representation limits explicit control over object manipulation. Existing research has proposed the integration of explicit geometric proxies to enable deformation. However, these methods face two primary challenges: firstly, the time-consuming and computationally demanding tetrahedralization process; and secondly, handling complex or thin structures often leads to either excessive, storage-intensive tetrahedral meshes or poor-quality ones that impair deformation capabilities. To address these challenges, we propose DeformRF, a method that seamlessly integrates the manipulability of tetrahedral meshes with the high-quality rendering capabilities of feature grid representations. To avoid ill-shaped tetrahedra and tetrahedralization for each object, we propose a two-stage training strategy. Starting with an almost-regular tetrahedral grid, our model initially retains key tetrahedra surrounding the object and subsequently refines object details using finer-granularity mesh in the second stage. We also present the concept of recursively subdivided tetrahedra to create higher-resolution meshes implicitly. This enables multi-resolution encoding while only necessitating the storage of the coarse tetrahedral mesh generated in the first training stage. We conduct a comprehensive evaluation of our DeformRF on both synthetic and real-captured datasets. Both quantitative and qualitative results demonstrate the effectiveness of our method for novel view synthesis and deformation tasks. Project page: https://ustc3dv.github.io/DeformRF/




Abstract:Neural implicit fields have established a new paradigm for scene representation, with subsequent work achieving high-quality real-time rendering. However, reconstructing 3D scenes from oblique aerial photography presents unique challenges, such as varying spatial scale distributions and a constrained range of tilt angles, often resulting in high memory consumption and reduced rendering quality at extrapolated viewpoints. In this paper, we enhance MERF to accommodate these data characteristics by introducing an innovative adaptive occupancy plane optimized during the volume rendering process and a smoothness regularization term for view-dependent color to address these issues. Our approach, termed Oblique-MERF, surpasses state-of-the-art real-time methods by approximately 0.7 dB, reduces VRAM usage by about 40%, and achieves higher rendering frame rates with more realistic rendering outcomes across most viewpoints.




Abstract:Cross-domain CTR (CDCTR) prediction is an important research topic that studies how to leverage meaningful data from a related domain to help CTR prediction in target domain. Most existing CDCTR works design implicit ways to transfer knowledge across domains such as parameter-sharing that regularizes the model training in target domain. More effectively, recent researchers propose explicit techniques to extract user interest knowledge and transfer this knowledge to target domain. However, the proposed method mainly faces two issues: 1) it usually requires a super domain, i.e. an extremely large source domain, to cover most users or items of target domain, and 2) the extracted user interest knowledge is static no matter what the context is in target domain. These limitations motivate us to develop a more flexible and efficient technique to explicitly transfer knowledge. In this work, we propose a cross-domain augmentation network (CDAnet) being able to perform explicit knowledge transfer between two domains. Specifically, CDAnet contains a designed translation network and an augmentation network which are trained sequentially. The translation network computes latent features from two domains and learns meaningful cross-domain knowledge of each input in target domain by using a designed cross-supervised feature translator. Later the augmentation network employs the explicit cross-domain knowledge as augmented information to boost the target domain CTR prediction. Through extensive experiments on two public benchmarks and one industrial production dataset, we show CDAnet can learn meaningful translated features and largely improve the performance of CTR prediction. CDAnet has been conducted online A/B test in image2product retrieval at Taobao app, bringing an absolute 0.11 point CTR improvement, a relative 0.64% deal growth and a relative 1.26% GMV increase.




Abstract:In the realm of e-commerce search, the significance of semantic matching cannot be overstated, as it directly impacts both user experience and company revenue. Along this line, query rewriting, serving as an important technique to bridge the semantic gaps inherent in the semantic matching process, has attached wide attention from the industry and academia. However, existing query rewriting methods often struggle to effectively optimize long-tail queries and alleviate the phenomenon of "few-recall" caused by semantic gap. In this paper, we present BEQUE, a comprehensive framework that Bridges the sEmantic gap for long-tail QUEries. In detail, BEQUE comprises three stages: multi-instruction supervised fine tuning (SFT), offline feedback, and objective alignment. We first construct a rewriting dataset based on rejection sampling and auxiliary tasks mixing to fine-tune our large language model (LLM) in a supervised fashion. Subsequently, with the well-trained LLM, we employ beam search to generate multiple candidate rewrites, and feed them into Taobao offline system to obtain the partial order. Leveraging the partial order of rewrites, we introduce a contrastive learning method to highlight the distinctions between rewrites, and align the model with the Taobao online objectives. Offline experiments prove the effectiveness of our method in bridging semantic gap. Online A/B tests reveal that our method can significantly boost gross merchandise volume (GMV), number of transaction (#Trans) and unique visitor (UV) for long-tail queries. BEQUE has been deployed on Taobao, one of most popular online shopping platforms in China, since October 2023.