Abstract:Urban forecasting models often face a severe data imbalance problem: only a few cities have dense, long-span records, while many others expose short or incomplete histories. Direct transfer from data-rich to data-scarce cities is unreliable because only a limited subset of source patterns truly benefits the target domain, whereas indiscriminate transfer risks introducing noise and negative transfer. We present STRATA-TS (Selective TRAnsfer via TArget-aware retrieval for Time Series), a framework that combines domain-adapted retrieval with reasoning-capable large models to improve forecasting in scarce data regimes. STRATA-TS employs a patch-based temporal encoder to identify source subsequences that are semantically and dynamically aligned with the target query. These retrieved exemplars are then injected into a retrieval-guided reasoning stage, where an LLM performs structured inference over target inputs and retrieved support. To enable efficient deployment, we distill the reasoning process into a compact open model via supervised fine-tuning. Extensive experiments on three parking availability datasets across Singapore, Nottingham, and Glasgow demonstrate that STRATA-TS consistently outperforms strong forecasting and transfer baselines, while providing interpretable knowledge transfer pathways.
Abstract:UIST researchers develop tools to address user challenges. However, user interactions with AI evolve over time through learning, adaptation, and repurposing, making one time evaluations insufficient. Capturing these dynamics requires longer-term studies, but challenges in deployment, evaluation design, and data collection have made such longitudinal research difficult to implement. Our workshop aims to tackle these challenges and prepare researchers with practical strategies for longitudinal studies. The workshop includes a keynote, panel discussions, and interactive breakout groups for discussion and hands-on protocol design and tool prototyping sessions. We seek to foster a community around longitudinal system research and promote it as a more embraced method for designing, building, and evaluating UIST tools.
Abstract:Next location prediction plays a critical role in understanding human mobility patterns. However, existing approaches face two core limitations: (1) they fall short in capturing the complex, multi-functional semantics of real-world locations; and (2) they lack the capacity to model heterogeneous behavioral dynamics across diverse user groups. To tackle these challenges, we introduce NextLocMoE, a novel framework built upon large language models (LLMs) and structured around a dual-level Mixture-of-Experts (MoE) design. Our architecture comprises two specialized modules: a Location Semantics MoE that operates at the embedding level to encode rich functional semantics of locations, and a Personalized MoE embedded within the Transformer backbone to dynamically adapt to individual user mobility patterns. In addition, we incorporate a history-aware routing mechanism that leverages long-term trajectory data to enhance expert selection and ensure prediction stability. Empirical evaluations across several real-world urban datasets show that NextLocMoE achieves superior performance in terms of predictive accuracy, cross-domain generalization, and interpretability
Abstract:We introduce DanmakuTPPBench, a comprehensive benchmark designed to advance multi-modal Temporal Point Process (TPP) modeling in the era of Large Language Models (LLMs). While TPPs have been widely studied for modeling temporal event sequences, existing datasets are predominantly unimodal, hindering progress in models that require joint reasoning over temporal, textual, and visual information. To address this gap, DanmakuTPPBench comprises two complementary components: (1) DanmakuTPP-Events, a novel dataset derived from the Bilibili video platform, where user-generated bullet comments (Danmaku) naturally form multi-modal events annotated with precise timestamps, rich textual content, and corresponding video frames; (2) DanmakuTPP-QA, a challenging question-answering dataset constructed via a novel multi-agent pipeline powered by state-of-the-art LLMs and multi-modal LLMs (MLLMs), targeting complex temporal-textual-visual reasoning. We conduct extensive evaluations using both classical TPP models and recent MLLMs, revealing significant performance gaps and limitations in current methods' ability to model multi-modal event dynamics. Our benchmark establishes strong baselines and calls for further integration of TPP modeling into the multi-modal language modeling landscape. The code and dataset have been released at https://github.com/FRENKIE-CHIANG/DanmakuTPPBench
Abstract:Diffusion models have shown excellent performance in text-to-image generation. Nevertheless, existing methods often suffer from performance bottlenecks when handling complex prompts that involve multiple objects, characteristics, and relations. Therefore, we propose a Multi-agent Collaboration-based Compositional Diffusion (MCCD) for text-to-image generation for complex scenes. Specifically, we design a multi-agent collaboration-based scene parsing module that generates an agent system comprising multiple agents with distinct tasks, utilizing MLLMs to extract various scene elements effectively. In addition, Hierarchical Compositional diffusion utilizes a Gaussian mask and filtering to refine bounding box regions and enhance objects through region enhancement, resulting in the accurate and high-fidelity generation of complex scenes. Comprehensive experiments demonstrate that our MCCD significantly improves the performance of the baseline models in a training-free manner, providing a substantial advantage in complex scene generation.
Abstract:During the early stages of interface design, designers need to produce multiple sketches to explore a design space. Design tools often fail to support this critical stage, because they insist on specifying more details than necessary. Although recent advances in generative AI have raised hopes of solving this issue, in practice they fail because expressing loose ideas in a prompt is impractical. In this paper, we propose a diffusion-based approach to the low-effort generation of interface sketches. It breaks new ground by allowing flexible control of the generation process via three types of inputs: A) prompts, B) wireframes, and C) visual flows. The designer can provide any combination of these as input at any level of detail, and will get a diverse gallery of low-fidelity solutions in response. The unique benefit is that large design spaces can be explored rapidly with very little effort in input-specification. We present qualitative results for various combinations of input specifications. Additionally, we demonstrate that our model aligns more accurately with these specifications than other models.
Abstract:Multimodal Sentiment Analysis (MSA) is an important research area that aims to understand and recognize human sentiment through multiple modalities. The complementary information provided by multimodal fusion promotes better sentiment analysis compared to utilizing only a single modality. Nevertheless, in real-world applications, many unavoidable factors may lead to situations of uncertain modality missing, thus hindering the effectiveness of multimodal modeling and degrading the model's performance. To this end, we propose a Hierarchical Representation Learning Framework (HRLF) for the MSA task under uncertain missing modalities. Specifically, we propose a fine-grained representation factorization module that sufficiently extracts valuable sentiment information by factorizing modality into sentiment-relevant and modality-specific representations through crossmodal translation and sentiment semantic reconstruction. Moreover, a hierarchical mutual information maximization mechanism is introduced to incrementally maximize the mutual information between multi-scale representations to align and reconstruct the high-level semantics in the representations. Ultimately, we propose a hierarchical adversarial learning mechanism that further aligns and adapts the latent distribution of sentiment-relevant representations to produce robust joint multimodal representations. Comprehensive experiments on three datasets demonstrate that HRLF significantly improves MSA performance under uncertain modality missing cases.
Abstract:Large Language Model (LLM)-driven interactive systems currently show potential promise in healthcare domains. Despite their remarkable capabilities, LLMs typically lack personalized recommendations and diagnosis analysis in sophisticated medical applications, causing hallucinations and performance bottlenecks. To address these challenges, this paper proposes MedAide, an LLM-based omni medical multi-agent collaboration framework for specialized healthcare services. Specifically, MedAide first performs query rewriting through retrieval-augmented generation to accomplish accurate medical intent understanding. Immediately, we devise a contextual encoder to obtain intent prototype embeddings, which are used to recognize fine-grained intents by similarity matching. According to the intent relevance, the activated agents collaborate effectively to provide integrated decision analysis. Extensive experiments are conducted on four medical benchmarks with composite intents. Experimental results from automated metrics and expert doctor evaluations show that MedAide outperforms current LLMs and improves their medical proficiency and strategic reasoning.
Abstract:Next location prediction is a critical task in human mobility analysis and serves as a foundation for various downstream applications. Existing methods typically rely on discrete IDs to represent locations, which inherently overlook spatial relationships and cannot generalize across cities. In this paper, we propose NextLocLLM, which leverages the advantages of large language models (LLMs) in processing natural language descriptions and their strong generalization capabilities for next location prediction. Specifically, instead of using IDs, NextLocLLM encodes locations based on continuous spatial coordinates to better model spatial relationships. These coordinates are further normalized to enable robust cross-city generalization. Another highlight of NextlocLLM is its LLM-enhanced POI embeddings. It utilizes LLMs' ability to encode each POI category's natural language description into embeddings. These embeddings are then integrated via nonlinear projections to form this LLM-enhanced POI embeddings, effectively capturing locations' functional attributes. Furthermore, task and data prompt prefix, together with trajectory embeddings, are incorporated as input for partly-frozen LLM backbone. NextLocLLM further introduces prediction retrieval module to ensure structural consistency in prediction. Experiments show that NextLocLLM outperforms existing models in next location prediction, excelling in both supervised and zero-shot settings.
Abstract:Text-to-image diffusion models have been demonstrated with unsafe generation due to unfiltered large-scale training data, such as violent, sexual, and shocking images, necessitating the erasure of unsafe concepts. Most existing methods focus on modifying the generation probabilities conditioned on the texts containing unsafe descriptions. However, they fail to guarantee safe generation for unseen texts in the training phase, especially for the prompts from adversarial attacks. In this paper, we re-analyze the erasure task and point out that existing methods cannot guarantee the minimization of the total probabilities of unsafe generation. To tackle this problem, we propose Dark Miner. It entails a recurring three-stage process that comprises mining, verifying, and circumventing. It greedily mines embeddings with maximum generation probabilities of unsafe concepts and reduces unsafe generation more effectively. In the experiments, we evaluate its performance on two inappropriate concepts, two objects, and two styles. Compared with 6 previous state-of-the-art methods, our method achieves better erasure and defense results in most cases, especially under 4 state-of-the-art attacks, while preserving the model's native generation capability. Our code will be available on GitHub.