Abstract:Combining Vision Large Language Models (VLLMs) with diffusion models offers a powerful method for executing image editing tasks based on human language instructions. However, language instructions alone often fall short in accurately conveying user requirements, particularly when users want to add, replace elements in specific areas of an image. Luckily, masks can effectively indicate the exact locations or elements to be edited, while they require users to precisely draw the shapes at the desired locations, which is highly user-unfriendly. To address this, we propose FlexEdit, an end-to-end image editing method that leverages both free-shape masks and language instructions for Flexible Editing. Our approach employs a VLLM in comprehending the image content, mask, and user instructions. Additionally, we introduce the Mask Enhance Adapter (MEA) that fuses the embeddings of the VLLM with the image data, ensuring a seamless integration of mask information and model output embeddings. Furthermore, we construct FSMI-Edit, a benchmark specifically tailored for free-shape mask, including 8 types of free-shape mask. Extensive experiments show that our method achieves state-of-the-art (SOTA) performance in LLM-based image editing, and our simple prompting technique stands out in its effectiveness. The code and data can be found at https://github.com/A-new-b/flex_edit.
Abstract:This paper presents our winning approach for the MER-NOISE and MER-OV tracks of the MER2024 Challenge on multimodal emotion recognition. Our system leverages the advanced emotional understanding capabilities of Emotion-LLaMA to generate high-quality annotations for unlabeled samples, addressing the challenge of limited labeled data. To enhance multimodal fusion while mitigating modality-specific noise, we introduce Conv-Attention, a lightweight and efficient hybrid framework. Extensive experimentation vali-dates the effectiveness of our approach. In the MER-NOISE track, our system achieves a state-of-the-art weighted average F-score of 85.30%, surpassing the second and third-place teams by 1.47% and 1.65%, respectively. For the MER-OV track, our utilization of Emotion-LLaMA for open-vocabulary annotation yields an 8.52% improvement in average accuracy and recall compared to GPT-4V, securing the highest score among all participating large multimodal models. The code and model for Emotion-LLaMA are available at https://github.com/ZebangCheng/Emotion-LLaMA.
Abstract:Image quality assessment (IQA) has long been a fundamental challenge in image understanding. In recent years, deep learning-based IQA methods have shown promising performance. However, the lack of large amounts of labeled data in the IQA field has hindered further advancements in these methods. This paper introduces DSMix, a novel data augmentation technique specifically designed for IQA tasks, aiming to overcome this limitation. DSMix leverages the distortion-induced sensitivity map (DSM) of an image as prior knowledge. It applies cut and mix operations to diverse categories of synthetic distorted images, assigning confidence scores to class labels based on the aforementioned prior knowledge. In the pre-training phase using DSMix-augmented data, knowledge distillation is employed to enhance the model's ability to extract semantic features. Experimental results on both synthetic and authentic IQA datasets demonstrate the significant predictive and generalization performance achieved by DSMix, without requiring fine-tuning of the full model. Code is available at \url{https://github.com/I2-Multimedia-Lab/DSMix}.
Abstract:Accurate emotion perception is crucial for various applications, including human-computer interaction, education, and counseling. However, traditional single-modality approaches often fail to capture the complexity of real-world emotional expressions, which are inherently multimodal. Moreover, existing Multimodal Large Language Models (MLLMs) face challenges in integrating audio and recognizing subtle facial micro-expressions. To address this, we introduce the MERR dataset, containing 28,618 coarse-grained and 4,487 fine-grained annotated samples across diverse emotional categories. This dataset enables models to learn from varied scenarios and generalize to real-world applications. Furthermore, we propose Emotion-LLaMA, a model that seamlessly integrates audio, visual, and textual inputs through emotion-specific encoders. By aligning features into a shared space and employing a modified LLaMA model with instruction tuning, Emotion-LLaMA significantly enhances both emotional recognition and reasoning capabilities. Extensive evaluations show Emotion-LLaMA outperforms other MLLMs, achieving top scores in Clue Overlap (7.83) and Label Overlap (6.25) on EMER, an F1 score of 0.9036 on MER2023 challenge, and the highest UAR (45.59) and WAR (59.37) in zero-shot evaluations on DFEW dataset.
Abstract:Deep learning benefits from the growing abundance of available data. Meanwhile, efficiently dealing with the growing data scale has become a challenge. Data publicly available are from different sources with various qualities, and it is impractical to do manual cleaning against noise and redundancy given today's data scale. There are existing techniques for cleaning/selecting the collected data. However, these methods are mainly proposed for offline settings that target one of the cleanness and redundancy problems. In practice, data are growing exponentially with both problems. This leads to repeated data curation with sub-optimal efficiency. To tackle this challenge, we propose InfoGrowth, an efficient online algorithm for data cleaning and selection, resulting in a growing dataset that keeps up to date with awareness of cleanliness and diversity. InfoGrowth can improve data quality/efficiency on both single-modal and multi-modal tasks, with an efficient and scalable design. Its framework makes it practical for real-world data engines.
Abstract:Training diffusion models is always a computation-intensive task. In this paper, we introduce a novel speed-up method for diffusion model training, called, which is based on a closer look at time steps. Our key findings are: i) Time steps can be empirically divided into acceleration, deceleration, and convergence areas based on the process increment. ii) These time steps are imbalanced, with many concentrated in the convergence area. iii) The concentrated steps provide limited benefits for diffusion training. To address this, we design an asymmetric sampling strategy that reduces the frequency of steps from the convergence area while increasing the sampling probability for steps from other areas. Additionally, we propose a weighting strategy to emphasize the importance of time steps with rapid-change process increments. As a plug-and-play and architecture-agnostic approach, SpeeD consistently achieves 3-times acceleration across various diffusion architectures, datasets, and tasks. Notably, due to its simple design, our approach significantly reduces the cost of diffusion model training with minimal overhead. Our research enables more researchers to train diffusion models at a lower cost.
Abstract:Emotional Text-to-Speech (E-TTS) synthesis has gained significant attention in recent years due to its potential to enhance human-computer interaction. However, current E-TTS approaches often struggle to capture the complexity of human emotions, primarily relying on oversimplified emotional labels or single-modality inputs. To address these limitations, we propose the Multimodal Emotional Text-to-Speech System (MM-TTS), a unified framework that leverages emotional cues from multiple modalities to generate highly expressive and emotionally resonant speech. MM-TTS consists of two key components: (1) the Emotion Prompt Alignment Module (EP-Align), which employs contrastive learning to align emotional features across text, audio, and visual modalities, ensuring a coherent fusion of multimodal information; and (2) the Emotion Embedding-Induced TTS (EMI-TTS), which integrates the aligned emotional embeddings with state-of-the-art TTS models to synthesize speech that accurately reflects the intended emotions. Extensive evaluations across diverse datasets demonstrate the superior performance of MM-TTS compared to traditional E-TTS models. Objective metrics, including Word Error Rate (WER) and Character Error Rate (CER), show significant improvements on ESD dataset, with MM-TTS achieving scores of 7.35% and 3.07%, respectively. Subjective assessments further validate that MM-TTS generates speech with emotional fidelity and naturalness comparable to human speech. Our code and pre-trained models are publicly available at https://anonymous.4open.science/r/MMTTS-D214
Abstract:Emotion recognition aims to discern the emotional state of subjects within an image, relying on subject-centric and contextual visual cues. Current approaches typically follow a two-stage pipeline: first localize subjects by off-the-shelf detectors, then perform emotion classification through the late fusion of subject and context features. However, the complicated paradigm suffers from disjoint training stages and limited interaction between fine-grained subject-context elements. To address the challenge, we present a single-stage emotion recognition approach, employing a Decoupled Subject-Context Transformer (DSCT), for simultaneous subject localization and emotion classification. Rather than compartmentalizing training stages, we jointly leverage box and emotion signals as supervision to enrich subject-centric feature learning. Furthermore, we introduce DSCT to facilitate interactions between fine-grained subject-context cues in a decouple-then-fuse manner. The decoupled query token--subject queries and context queries--gradually intertwine across layers within DSCT, during which spatial and semantic relations are exploited and aggregated. We evaluate our single-stage framework on two widely used context-aware emotion recognition datasets, CAER-S and EMOTIC. Our approach surpasses two-stage alternatives with fewer parameter numbers, achieving a 3.39% accuracy improvement and a 6.46% average precision gain on CAER-S and EMOTIC datasets, respectively.
Abstract:Semi-supervised learning has emerged as a promising approach to tackle the challenge of label scarcity in facial expression recognition (FER) task. However, current state-of-the-art methods primarily focus on one side of the coin, i.e., generating high-quality pseudo-labels, while overlooking the other side: enhancing expression-relevant representations. In this paper, we unveil both sides of the coin by proposing a unified framework termed hierarchicaL dEcoupling And Fusing (LEAF) to coordinate expression-relevant representations and pseudo-labels for semi-supervised FER. LEAF introduces a hierarchical expression-aware aggregation strategy that operates at three levels: semantic, instance, and category. (1) At the semantic and instance levels, LEAF decouples representations into expression-agnostic and expression-relevant components, and adaptively fuses them using learnable gating weights. (2) At the category level, LEAF assigns ambiguous pseudo-labels by decoupling predictions into positive and negative parts, and employs a consistency loss to ensure agreement between two augmented views of the same image. Extensive experiments on benchmark datasets demonstrate that by unveiling and harmonizing both sides of the coin, LEAF outperforms state-of-the-art semi-supervised FER methods, effectively leveraging both labeled and unlabeled data. Moreover, the proposed expression-aware aggregation strategy can be seamlessly integrated into existing semi-supervised frameworks, leading to significant performance gains. Our code is available at https://anonymous.4open.science/r/LEAF-BC57/.
Abstract:This paper presents our winning submission to Subtask 2 of SemEval 2024 Task 3 on multimodal emotion cause analysis in conversations. We propose a novel Multimodal Emotion Recognition and Multimodal Emotion Cause Extraction (MER-MCE) framework that integrates text, audio, and visual modalities using specialized emotion encoders. Our approach sets itself apart from top-performing teams by leveraging modality-specific features for enhanced emotion understanding and causality inference. Experimental evaluation demonstrates the advantages of our multimodal approach, with our submission achieving a competitive weighted F1 score of 0.3435, ranking third with a margin of only 0.0339 behind the 1st team and 0.0025 behind the 2nd team. Project: https://github.com/MIPS-COLT/MER-MCE.git