Victor
Abstract:Magnetic resonance imaging (MRI) is essential for nasopharyngeal carcinoma (NPC) radiotherapy (RT), but practical constraints, such as patient discomfort, long scan times, and high costs often lead to incomplete modalities in clinical practice, compromising RT planning accuracy. Traditional MRI synthesis methods are modality-specific, limited in anatomical adaptability, and lack clinical interpretability-failing to meet NPC's RT needs. Here, we developed a unified foundation model integrating contrastive visual representation learning and vision-language alignment (VLA) to enable any-to-all MRI synthesis. The model uses a contrastive encoder for modality-invariant representations and a CLIP-based text-informed decoder for semantically consistent synthesis, supporting any-to-all MRI synthesis via one unified foundation model. Trained on 40,825 images from 13 institutions, it achieves consistently high performance (average SSIM 0.90, PSNR 27) across 26 internal/external validation sites (15,748 images), with superior synthesis fidelity and robustness to noise and domain shifts. Meanwhile, its unified representation enhances downstream RT-relevant tasks (e.g., segmentation). This work advances digital medicine solutions for NPC care by leveraging foundation models to bridge technical synthesis and clinical utility.
Abstract:Recent large language models (LLMs) achieve strong performance in generating promising reasoning paths for complex tasks. However, despite powerful generation ability, LLMs remain weak at verifying their own answers, revealing a persistent capability asymmetry between generation and self-verification. In this work, we conduct an in-depth investigation of this asymmetry throughout training evolution and show that, even on the same task, improving generation does not lead to corresponding improvements in self-verification. Interestingly, we find that the reverse direction of this asymmetry behaves differently: learning to self-verify can effectively improve generation performance, achieving accuracy comparable to standard generation training while yielding more efficient and effective reasoning traces. Building on this observation, we further explore integrating self-verification into generation training by formulating a multi-task reinforcement learning framework, where generation and self-verification are optimized as two independent but complementary objectives. Extensive experiments across benchmarks and models demonstrate performance gains over generation-only training in both generation and verification capabilities.
Abstract:In reconfigurable intelligent surface (RIS)-assisted millimeter-wave (mmWave) communication systems, the large-scale RIS introduces pronounced geometric effects that lead to the coexistence of far-field and near-field propagation. Furthermore, random blockages induce spatial non-stationarity across the RIS array, causing signals from different scatterers to illuminate only partial regions, referred to as visible regions (VRs). This renders conventional far-field and fully visible array-based channel models inadequate and makes channel estimation particularly challenging. In this paper, we investigate the non-stationary cascaded channel estimation problem in a hybrid-field propagation environment, where the RIS-base station (BS) link operates in the far-field, while the user-RIS link exhibits near-field characteristics with partial visibility. To address the resulting high-dimensional and coupled estimation problem, a reduced-dimensional sparse bilinear representation is developed by exploiting the structural characteristics of the cascaded channel. In particular, a dictionary compression technique is proposed to represent the high-dimensional coupled dictionary using a low-dimensional polar-domain dictionary weighted by a visibility matrix, thereby significantly reducing the problem scale. Based on this representation, a turbo-structured joint Bayesian estimation (TS-JBE) approach is proposed to simultaneously estimate the channel gains, VRs, and off-grid parameters, thereby avoiding error propagation inherent in existing sequential methods. Simulation results demonstrate that the proposed method significantly improves the estimation accuracy compared with existing approaches.
Abstract:Large language models (LLMs) achieve strong capabilities by scaling model capacity and training data, yet many real-world deployments rely on smaller models trained or adapted from low-resource data. This gap motivates the need for mechanisms to transfer knowledge from large, high-resource models to smaller, low-resource targets. While model merging provides an effective transfer mechanism, most existing approaches assume architecture-compatible models and therefore cannot directly transfer knowledge from large high-resource LLMs to heterogeneous low-resource targets. In this work, we propose a cross-architecture merging framework based on optimal transport (OT) that aligns activations to infer cross-neuron correspondences between heterogeneous models. The resulting transport plans are then used to guide direct weight-space fusion, enabling effective high-resource to low-resource transfer using only a small set of inputs. Extensive experiments across low-resource languages and specialized domains demonstrate consistent improvements over target models.
Abstract:Large Language Models (LLMs) are increasingly deployed as agents that operate in real-world environments, introducing safety risks beyond linguistic harm. Existing agent safety evaluations rely on risk-oriented tasks tailored to specific agent settings, resulting in limited coverage of safety risk space and failing to assess agent safety behavior during long-horizon, interactive task execution in complex real-world deployments. Moreover, their specialization to particular agent settings limits adaptability across diverse agent configurations. To address these limitations, we propose Risky-Bench, a framework that enables systematic agent safety evaluation grounded in real-world deployment. Risky-Bench organizes evaluation around domain-agnostic safety principles to derive context-aware safety rubrics that delineate safety space, and systematically evaluates safety risks across this space through realistic task execution under varying threat assumptions. When applied to life-assist agent settings, Risky-Bench uncovers substantial safety risks in state-of-the-art agents under realistic execution conditions. Moreover, as a well-structured evaluation pipeline, Risky-Bench is not confined to life-assist scenarios and can be adapted to other deployment settings to construct environment-specific safety evaluations, providing an extensible methodology for agent safety assessment.
Abstract:Test-Time Scaling (TTS) has emerged as an effective paradigm for improving the reasoning performance of large language models (LLMs). However, existing methods -- most notably majority voting and heuristic token-level scoring -- treat reasoning traces or tokens equally, thereby being susceptible to substantial variations in trajectory quality and localized logical failures. In this work, we introduce \textbf{Chronos}, a lightweight and plug-and-play chronological reasoning scorer that models each trajectory as a time series. Specifically, Chronos learns to capture trajectory features of token probabilities, assigns quality scores accordingly, and employs a weighted voting mechanism. Extensive evaluations on both in-domain and out-of-domain benchmarks demonstrate that Chronos consistently delivers substantial gains across a variety of models, with negligible computational overhead. Notably, Chronos@128 achieves relative improvements of 34.21\% over Pass@1 and 22.70\% over Maj@128 on HMMT25 using Qwen3-4B-Thinking-2507, highlighting its effectiveness.
Abstract:The emergence of Large Reasoning Models (LRMs) introduces a new paradigm of explicit reasoning, enabling remarkable advances yet posing unique risks such as reasoning manipulation and information leakage. To mitigate these risks, current alignment strategies predominantly rely on heavy post-training paradigms or external interventions. However, these approaches are often computationally intensive and fail to address the inherent awareness-compliance gap, a critical misalignment where models recognize potential risks yet prioritize following user instructions due to their sycophantic tendencies. To address these limitations, we propose Self-Guard, a lightweight safety defense framework that reinforces safety compliance at the representational level. Self-Guard operates through two principal stages: (1) safety-oriented prompting, which activates the model's latent safety awareness to evoke spontaneous reflection, and (2) safety activation steering, which extracts the resulting directional shift in the hidden state space and amplifies it to ensure that safety compliance prevails over sycophancy during inference. Experiments demonstrate that Self-Guard effectively bridges the awareness-compliance gap, achieving robust safety performance without compromising model utility. Furthermore, Self-Guard exhibits strong generalization across diverse unseen risks and varying model scales, offering a cost-efficient solution for LRM safety alignment.
Abstract:Long-horizon agentic reasoning necessitates effectively compressing growing interaction histories into a limited context window. Most existing memory systems serialize history as text, where token-level cost is uniform and scales linearly with length, often spending scarce budget on low-value details. To this end, we introduce MemOCR, a multimodal memory agent that improves long-horizon reasoning under tight context budgets by allocating memory space with adaptive information density through visual layout. Concretely, MemOCR maintains a structured rich-text memory (e.g., headings, highlights) and renders it into an image that the agent consults for memory access, visually prioritizing crucial evidence while aggressively compressing auxiliary details. To ensure robustness across varying memory budgets, we train MemOCR with reinforcement learning under budget-aware objectives that expose the agent to diverse compression levels. Across long-context multi-hop and single-hop question-answering benchmarks, MemOCR outperforms strong text-based baselines and achieves more effective context utilization under extreme budgets.
Abstract:Large Language Models (LLMs) excel across diverse domains but suffer from high energy costs due to quadratic attention and dense Feed-Forward Network (FFN) operations. To address these issues, we propose Module-aware Architecture Refinement (MAR), a two-stage framework that integrates State Space Models (SSMs) for linear-time sequence modeling and applies activation sparsification to reduce FFN costs. In addition, to mitigate low information density and temporal mismatch in integrating Spiking Neural Networks (SNNs) with SSMs, we design the Adaptive Ternary Multi-step Neuron (ATMN) and the Spike-aware Bidirectional Distillation Strategy (SBDS). Extensive experiments demonstrate that MAR effectively restores the performance of its dense counterpart under constrained resources while substantially reducing inference energy consumption. Furthermore, it outperforms efficient models of comparable or even larger scale, underscoring its potential for building efficient and practical LLMs.
Abstract:Recent GRPO-based approaches built on flow matching models have shown remarkable improvements in human preference alignment for text-to-image generation. Nevertheless, they still suffer from the sparse reward problem: the terminal reward of the entire denoising trajectory is applied to all intermediate steps, resulting in a mismatch between the global feedback signals and the exact fine-grained contributions at intermediate denoising steps. To address this issue, we introduce \textbf{DenseGRPO}, a novel framework that aligns human preference with dense rewards, which evaluates the fine-grained contribution of each denoising step. Specifically, our approach includes two key components: (1) we propose to predict the step-wise reward gain as dense reward of each denoising step, which applies a reward model on the intermediate clean images via an ODE-based approach. This manner ensures an alignment between feedback signals and the contributions of individual steps, facilitating effective training; and (2) based on the estimated dense rewards, a mismatch drawback between the uniform exploration setting and the time-varying noise intensity in existing GRPO-based methods is revealed, leading to an inappropriate exploration space. Thus, we propose a reward-aware scheme to calibrate the exploration space by adaptively adjusting a timestep-specific stochasticity injection in the SDE sampler, ensuring a suitable exploration space at all timesteps. Extensive experiments on multiple standard benchmarks demonstrate the effectiveness of the proposed DenseGRPO and highlight the critical role of the valid dense rewards in flow matching model alignment.