Abstract:Large Language Models (LLMs) are increasingly deployed as agents that operate in real-world environments, introducing safety risks beyond linguistic harm. Existing agent safety evaluations rely on risk-oriented tasks tailored to specific agent settings, resulting in limited coverage of safety risk space and failing to assess agent safety behavior during long-horizon, interactive task execution in complex real-world deployments. Moreover, their specialization to particular agent settings limits adaptability across diverse agent configurations. To address these limitations, we propose Risky-Bench, a framework that enables systematic agent safety evaluation grounded in real-world deployment. Risky-Bench organizes evaluation around domain-agnostic safety principles to derive context-aware safety rubrics that delineate safety space, and systematically evaluates safety risks across this space through realistic task execution under varying threat assumptions. When applied to life-assist agent settings, Risky-Bench uncovers substantial safety risks in state-of-the-art agents under realistic execution conditions. Moreover, as a well-structured evaluation pipeline, Risky-Bench is not confined to life-assist scenarios and can be adapted to other deployment settings to construct environment-specific safety evaluations, providing an extensible methodology for agent safety assessment.
Abstract:The emergence of Large Reasoning Models (LRMs) introduces a new paradigm of explicit reasoning, enabling remarkable advances yet posing unique risks such as reasoning manipulation and information leakage. To mitigate these risks, current alignment strategies predominantly rely on heavy post-training paradigms or external interventions. However, these approaches are often computationally intensive and fail to address the inherent awareness-compliance gap, a critical misalignment where models recognize potential risks yet prioritize following user instructions due to their sycophantic tendencies. To address these limitations, we propose Self-Guard, a lightweight safety defense framework that reinforces safety compliance at the representational level. Self-Guard operates through two principal stages: (1) safety-oriented prompting, which activates the model's latent safety awareness to evoke spontaneous reflection, and (2) safety activation steering, which extracts the resulting directional shift in the hidden state space and amplifies it to ensure that safety compliance prevails over sycophancy during inference. Experiments demonstrate that Self-Guard effectively bridges the awareness-compliance gap, achieving robust safety performance without compromising model utility. Furthermore, Self-Guard exhibits strong generalization across diverse unseen risks and varying model scales, offering a cost-efficient solution for LRM safety alignment.
Abstract:Despite the growing adoption of large language models (LLMs) in scientific research workflows, automated support for academic rebuttal, a crucial step in academic communication and peer review, remains largely underexplored. Existing approaches typically rely on off-the-shelf LLMs or simple pipelines, which struggle with long-context understanding and often fail to produce targeted and persuasive responses. In this paper, we propose DRPG, an agentic framework for automatic academic rebuttal generation that operates through four steps: Decompose reviews into atomic concerns, Retrieve relevant evidence from the paper, Plan rebuttal strategies, and Generate responses accordingly. Notably, the Planner in DRPG reaches over 98% accuracy in identifying the most feasible rebuttal direction. Experiments on data from top-tier conferences demonstrate that DRPG significantly outperforms existing rebuttal pipelines and achieves performance beyond the average human level using only an 8B model. Our analysis further demonstrates the effectiveness of the planner design and its value in providing multi-perspective and explainable suggestions. We also showed that DRPG works well in a more complex multi-round setting. These results highlight the effectiveness of DRPG and its potential to provide high-quality rebuttal content and support the scaling of academic discussions. Codes for this work are available at https://github.com/ulab-uiuc/DRPG-RebuttalAgent.