Abstract:Magnetic resonance imaging (MRI) is essential for nasopharyngeal carcinoma (NPC) radiotherapy (RT), but practical constraints, such as patient discomfort, long scan times, and high costs often lead to incomplete modalities in clinical practice, compromising RT planning accuracy. Traditional MRI synthesis methods are modality-specific, limited in anatomical adaptability, and lack clinical interpretability-failing to meet NPC's RT needs. Here, we developed a unified foundation model integrating contrastive visual representation learning and vision-language alignment (VLA) to enable any-to-all MRI synthesis. The model uses a contrastive encoder for modality-invariant representations and a CLIP-based text-informed decoder for semantically consistent synthesis, supporting any-to-all MRI synthesis via one unified foundation model. Trained on 40,825 images from 13 institutions, it achieves consistently high performance (average SSIM 0.90, PSNR 27) across 26 internal/external validation sites (15,748 images), with superior synthesis fidelity and robustness to noise and domain shifts. Meanwhile, its unified representation enhances downstream RT-relevant tasks (e.g., segmentation). This work advances digital medicine solutions for NPC care by leveraging foundation models to bridge technical synthesis and clinical utility.
Abstract:Automatic lymph node segmentation is the cornerstone for advances in computer vision tasks for early detection and staging of cancer. Traditional segmentation methods are constrained by manual delineation and variability in operator proficiency, limiting their ability to achieve high accuracy. The introduction of deep learning technologies offers new possibilities for improving the accuracy of lymph node image analysis. This study evaluates the application of deep learning in lymph node segmentation and discusses the methodologies of various deep learning architectures such as convolutional neural networks, encoder-decoder networks, and transformers in analyzing medical imaging data across different modalities. Despite the advancements, it still confronts challenges like the shape diversity of lymph nodes, the scarcity of accurately labeled datasets, and the inadequate development of methods that are robust and generalizable across different imaging modalities. To the best of our knowledge, this is the first study that provides a comprehensive overview of the application of deep learning techniques in lymph node segmentation task. Furthermore, this study also explores potential future research directions, including multimodal fusion techniques, transfer learning, and the use of large-scale pre-trained models to overcome current limitations while enhancing cancer diagnosis and treatment planning strategies.