Abstract:Federated learning (FL) has been a hot topic in recent years. Ever since it was introduced, researchers have endeavored to devise FL systems that protect privacy or ensure fair results, with most research focusing on one or the other. As two crucial ethical notions, the interactions between privacy and fairness are comparatively less studied. However, since privacy and fairness compete, considering each in isolation will inevitably come at the cost of the other. To provide a broad view of these two critical topics, we presented a detailed literature review of privacy and fairness issues, highlighting unique challenges posed by FL and solutions in federated settings. We further systematically surveyed different interactions between privacy and fairness, trying to reveal how privacy and fairness could affect each other and point out new research directions in fair and private FL.
Abstract:Video panoptic segmentation is a challenging task that serves as the cornerstone of numerous downstream applications, including video editing and autonomous driving. We believe that the decoupling strategy proposed by DVIS enables more effective utilization of temporal information for both "thing" and "stuff" objects. In this report, we successfully validated the effectiveness of the decoupling strategy in video panoptic segmentation. Finally, our method achieved a VPQ score of 51.4 and 53.7 in the development and test phases, respectively, and ultimately ranked 1st in the VPS track of the 2nd PVUW Challenge. The code is available at https://github.com/zhang-tao-whu/DVIS
Abstract:Video instance segmentation (VIS) is a critical task with diverse applications, including autonomous driving and video editing. Existing methods often underperform on complex and long videos in real world, primarily due to two factors. Firstly, offline methods are limited by the tightly-coupled modeling paradigm, which treats all frames equally and disregards the interdependencies between adjacent frames. Consequently, this leads to the introduction of excessive noise during long-term temporal alignment. Secondly, online methods suffer from inadequate utilization of temporal information. To tackle these challenges, we propose a decoupling strategy for VIS by dividing it into three independent sub-tasks: segmentation, tracking, and refinement. The efficacy of the decoupling strategy relies on two crucial elements: 1) attaining precise long-term alignment outcomes via frame-by-frame association during tracking, and 2) the effective utilization of temporal information predicated on the aforementioned accurate alignment outcomes during refinement. We introduce a novel referring tracker and temporal refiner to construct the \textbf{D}ecoupled \textbf{VIS} framework (\textbf{DVIS}). DVIS achieves new SOTA performance in both VIS and VPS, surpassing the current SOTA methods by 7.3 AP and 9.6 VPQ on the OVIS and VIPSeg datasets, which are the most challenging and realistic benchmarks. Moreover, thanks to the decoupling strategy, the referring tracker and temporal refiner are super light-weight (only 1.69\% of the segmenter FLOPs), allowing for efficient training and inference on a single GPU with 11G memory. The code is available at \href{https://github.com/zhang-tao-whu/DVIS}{https://github.com/zhang-tao-whu/DVIS}.
Abstract:Prototype is widely used to represent internal structure of category for few-shot learning, which was proposed as a simple inductive bias to address the issue of overfitting. However, since prototype representation is normally averaged from individual samples, it cannot flexibly adjust the retention ability of sample differences that may leads to underfitting in some cases of sample distribution. To address this problem, in this work, we propose Shrinkage Exemplar Networks (SENet) for few-shot classification. SENet balances the prototype representations (high-bias, low-variance) and example representations (low-bias, high-variance) using a shrinkage estimator, where the categories are represented by the embedings of samples that shrink to their mean via spectral filtering. Furthermore, a shrinkage exemplar loss is proposed to replace the widely used cross entropy loss for capturing the information of individual shrinkage samples. Several experiments were conducted on miniImageNet, tiered-ImageNet and CIFAR-FS datasets. We demonstrate that our proposed model is superior to the example model and the prototype model for some tasks.
Abstract:Keyword Spotting (KWS) is a critical aspect of audio-based applications on mobile devices and virtual assistants. Recent developments in Federated Learning (FL) have significantly expanded the ability to train machine learning models by utilizing the computational and private data resources of numerous distributed devices. However, existing FL methods typically require that devices possess accurate ground-truth labels, which can be both expensive and impractical when dealing with local audio data. In this study, we first demonstrate the effectiveness of Semi-Supervised Federated Learning (SSL) and FL for KWS. We then extend our investigation to Semi-Supervised Federated Learning (SSFL) for KWS, where devices possess completely unlabeled data, while the server has access to a small amount of labeled data. We perform numerical analyses using state-of-the-art SSL, FL, and SSFL techniques to demonstrate that the performance of KWS models can be significantly improved by leveraging the abundant unlabeled heterogeneous data available on devices.
Abstract:Symmetric bi-manual manipulation is essential for various on-orbit operations due to its potent load capacity. As a result, there exists an emerging research interest in the problem of achieving high operation accuracy while enhancing adaptability and compliance. However, previous works relied on an inefficient algorithm framework that separates motion planning from compliant control. Additionally, the compliant controller lacks robustness due to manually adjusted parameters. This paper proposes a novel Learning-based Adaptive Compliance algorithm (LAC) that improves the efficiency and robustness of symmetric bi-manual manipulation. Specifically, first, the algorithm framework combines desired trajectory generation with impedance-parameter adjustment to improve efficiency and robustness. Second, we introduce a centralized Actor-Critic framework with LSTM networks, enhancing the synchronization of bi-manual manipulation. LSTM networks pre-process the force states obtained by the agents, further ameliorating the performance of compliance operations. When evaluated in the dual-arm cooperative handling and peg-in-hole assembly experiments, our method outperforms baseline algorithms in terms of optimality and robustness.
Abstract:Reinforcement learning (RL) has achieved promising results on most robotic control tasks. Safety of learning-based controllers is an essential notion of ensuring the effectiveness of the controllers. Current methods adopt whole consistency constraints during the training, thus resulting in inefficient exploration in the early stage. In this paper, we propose a Constrained Policy Optimization with Extra Safety Budget (ESB-CPO) algorithm to strike a balance between the exploration and the constraints. In the early stage, our method loosens the practical constraints of unsafe transitions (adding extra safety budget) with the aid of a new metric we propose. With the training process, the constraints in our optimization problem become tighter. Meanwhile, theoretical analysis and practical experiments demonstrate that our method gradually meets the cost limit's demand in the final training stage. When evaluated on Safety-Gym and Bullet-Safety-Gym benchmarks, our method has shown its advantages over baseline algorithms in terms of safety and optimality. Remarkably, our method gains remarkable performance improvement under the same cost limit compared with CPO algorithm.
Abstract:Deep neural networks (DNNs) are known to be vulnerable to adversarial examples, which are usually designed artificially to fool DNNs, but rarely exist in real-world scenarios. In this paper, we study the adversarial examples caused by raindrops, to demonstrate that there exist plenty of natural phenomena being able to work as adversarial attackers to DNNs. Moreover, we present a new approach to generate adversarial raindrops, denoted as AdvRD, using the generative adversarial network (GAN) technique to simulate natural raindrops. The images crafted by our AdvRD look very similar to the real-world raindrop images, statistically close to the distribution of true raindrop images, and more importantly, can perform strong adversarial attack to the state-of-the-art DNN models. On the other side, we show that the adversarial training using our AdvRD images can significantly improve the robustness of DNNs to the real-world raindrop attacks. Extensive experiments are carried out to demonstrate that the images crafted by AdvRD are visually and statistically close to the natural raindrop images, can work as strong attackers to DNN models, and also help improve the robustness of DNNs to raindrop attacks.
Abstract:In space-time adaptive processing (STAP) of the airborne radar system, it is very important to realize sparse restoration of the clutter covariance matrix with a small number of samples. In this paper, a clutter suppression method for airborne forward-looking array radar based on joint statistics and structural priority is proposed, which can estimate the clutter covariance matrix in the case of small samples. Assuming that the clutter covariance matrix obeys the inverse Wishart prior distribution, the maximum posterior estimate is obtained by using the low-rank symmetry of the matrix itself. The simulation results based on the radar forward-looking array model show that compared with the traditional covariance matrix estimation method, the proposed method can effectively improve the clutter suppression performance of airborne radar while efficiently calculating.
Abstract:Interview has been regarded as one of the most crucial step for recruitment. To fully prepare for the interview with the recruiters, job seekers usually practice with mock interviews between each other. However, such a mock interview with peers is generally far away from the real interview experience: the mock interviewers are not guaranteed to be professional and are not likely to behave like a real interviewer. Due to the rapid growth of online recruitment in recent years, recruiters tend to have online interviews, which makes it possible to collect real interview data from real interviewers. In this paper, we propose a novel application named EZInterviewer, which aims to learn from the online interview data and provides mock interview services to the job seekers. The task is challenging in two ways: (1) the interview data are now available but still of low-resource; (2) to generate meaningful and relevant interview dialogs requires thorough understanding of both resumes and job descriptions. To address the low-resource challenge, EZInterviewer is trained on a very small set of interview dialogs. The key idea is to reduce the number of parameters that rely on interview dialogs by disentangling the knowledge selector and dialog generator so that most parameters can be trained with ungrounded dialogs as well as the resume data that are not low-resource. Evaluation results on a real-world job interview dialog dataset indicate that we achieve promising results to generate mock interviews. With the help of EZInterviewer, we hope to make mock interview practice become easier for job seekers.