Abstract:Finetuning a pretrained vision model (PVM) is a common technique for learning downstream vision tasks. The conventional finetuning process with the randomly sampled data points results in diminished training efficiency. To address this drawback, we propose a novel approach, VLM-empowered Collaborative Active Finetuning (VeCAF). VeCAF optimizes a parametric data selection model by incorporating the training objective of the model being tuned. Effectively, this guides the PVM towards the performance goal with improved data and computational efficiency. As vision-language models (VLMs) have achieved significant advancements by establishing a robust connection between image and language domains, we exploit the inherent semantic richness of the text embedding space and utilize text embedding of pretrained VLM models to augment PVM image features for better data selection and finetuning. Furthermore, the flexibility of text-domain augmentation gives VeCAF a unique ability to handle out-of-distribution scenarios without external augmented data. Extensive experiments show the leading performance and high efficiency of VeCAF that is superior to baselines in both in-distribution and out-of-distribution image classification tasks. On ImageNet, VeCAF needs up to 3.3x less training batches to reach the target performance compared to full finetuning and achieves 2.8% accuracy improvement over SOTA methods with the same number of batches.
Abstract:Recent work on Neural Radiance Fields (NeRF) exploits multi-view 3D consistency, achieving impressive results in 3D scene modeling and high-fidelity novel-view synthesis. However, there are limitations. First, existing methods assume enough high-quality images are available for training the NeRF model, ignoring real-world image degradation. Second, previous methods struggle with ambiguity in the training set due to unmodeled inconsistencies among different views. In this work, we present RustNeRF for real-world high-quality NeRF. To improve NeRF's robustness under real-world inputs, we train a 3D-aware preprocessing network that incorporates real-world degradation modeling. We propose a novel implicit multi-view guidance to address information loss during image degradation and restoration. Extensive experiments demonstrate RustNeRF's advantages over existing approaches under real-world degradation. The code will be released.
Abstract:In the realm of household robotics, the Zero-Shot Object Navigation (ZSON) task empowers agents to adeptly traverse unfamiliar environments and locate objects from novel categories without prior explicit training. This paper introduces VoroNav, a novel semantic exploration framework that proposes the Reduced Voronoi Graph to extract exploratory paths and planning nodes from a semantic map constructed in real time. By harnessing topological and semantic information, VoroNav designs text-based descriptions of paths and images that are readily interpretable by a large language model (LLM). Our approach presents a synergy of path and farsight descriptions to represent the environmental context, enabling the LLM to apply commonsense reasoning to ascertain the optimal waypoints for navigation. Extensive evaluation on the HM3D and HSSD datasets validates that VoroNav surpasses existing ZSON benchmarks in both success rates and exploration efficiency (+2.8% Success and +3.7% SPL on HM3D, +2.6% Success and +3.8% SPL on HSSD). Additionally introduced metrics that evaluate obstacle avoidance proficiency and perceptual efficiency further corroborate the enhancements achieved by our method in ZSON planning.
Abstract:The Mixture-of-Experts (MoE) approach has demonstrated outstanding scalability in multi-task learning including low-level upstream tasks such as concurrent removal of multiple adverse weather effects. However, the conventional MoE architecture with parallel Feed Forward Network (FFN) experts leads to significant parameter and computational overheads that hinder its efficient deployment. In addition, the naive MoE linear router is suboptimal in assigning task-specific features to multiple experts which limits its further scalability. In this work, we propose an efficient MoE architecture with weight sharing across the experts. Inspired by the idea of linear feature modulation (FM), our architecture implicitly instantiates multiple experts via learnable activation modulations on a single shared expert block. The proposed Feature Modulated Expert (FME) serves as a building block for the novel Mixture-of-Feature-Modulation-Experts (MoFME) architecture, which can scale up the number of experts with low overhead. We further propose an Uncertainty-aware Router (UaR) to assign task-specific features to different FM modules with well-calibrated weights. This enables MoFME to effectively learn diverse expert functions for multiple tasks. The conducted experiments on the multi-deweather task show that our MoFME outperforms the baselines in the image restoration quality by 0.1-0.2 dB and achieves SOTA-compatible performance while saving more than 72% of parameters and 39% inference time over the conventional MoE counterpart. Experiments on the downstream segmentation and classification tasks further demonstrate the generalizability of MoFME to real open-world applications.
Abstract:The burgeoning field of Multimodal Large Language Models (MLLMs) has exhibited remarkable performance in diverse tasks such as captioning, commonsense reasoning, and visual scene understanding. However, the deployment of these large-scale MLLMs on client devices is hindered by their extensive model parameters, leading to a notable decline in generalization capabilities when these models are compressed for device deployment. Addressing this challenge, we introduce a Cloud-Device Collaborative Continual Adaptation framework, designed to enhance the performance of compressed, device-deployed MLLMs by leveraging the robust capabilities of cloud-based, larger-scale MLLMs. Our framework is structured into three key components: a device-to-cloud uplink for efficient data transmission, cloud-based knowledge adaptation, and an optimized cloud-to-device downlink for model deployment. In the uplink phase, we employ an Uncertainty-guided Token Sampling (UTS) strategy to effectively filter out-of-distribution tokens, thereby reducing transmission costs and improving training efficiency. On the cloud side, we propose Adapter-based Knowledge Distillation (AKD) method to transfer refined knowledge from large-scale to compressed, pocket-size MLLMs. Furthermore, we propose a Dynamic Weight update Compression (DWC) strategy for the downlink, which adaptively selects and quantizes updated weight parameters, enhancing transmission efficiency and reducing the representational disparity between cloud and device models. Extensive experiments on several multimodal benchmarks demonstrate the superiority of our proposed framework over prior Knowledge Distillation and device-cloud collaboration methods. Notably, we also validate the feasibility of our approach to real-world experiments.
Abstract:Diffusion models have shown impressive performance in many domains, including image generation, time series prediction, and reinforcement learning. The algorithm demonstrates superior performance over the traditional GAN and transformer based methods. However, the model's capability to follow natural language instructions (e.g., spatial relationships between objects, generating complex scenes) is still unsatisfactory. This has been an important research area to enhance such capability. Prior works adopt reinforcement learning to adjust the behavior of the diffusion models. However, RL methods not only require careful reward design and complex hyperparameter tuning, but also fails to incorporate rich natural language feedback. In this work, we propose iterative prompt relabeling (IP-RLDF), a novel algorithm that aligns images to text through iterative image sampling and prompt relabeling. IP-RLDF first samples a batch of images conditioned on the text, then relabels the text prompts of unmatched text-image pairs with classifier feedback. We conduct thorough experiments on three different models, including SDv2, GLIGEN, and SDXL, testing their capability to generate images following instructions. With IP-RLDF, we improved up to 15.22% (absolute improvement) on the challenging spatial relation VISOR benchmark, demonstrating superior performance compared to previous RL methods.
Abstract:The superior performances of pre-trained foundation models in various visual tasks underscore their potential to enhance the 2D models' open-vocabulary ability. Existing methods explore analogous applications in the 3D space. However, most of them only center around knowledge extraction from singular foundation models, which limits the open-vocabulary ability of 3D models. We hypothesize that leveraging complementary pre-trained knowledge from various foundation models can improve knowledge transfer from 2D pre-trained visual language models to the 3D space. In this work, we propose FM-OV3D, a method of Foundation Model-based Cross-modal Knowledge Blending for Open-Vocabulary 3D Detection, which improves the open-vocabulary localization and recognition abilities of 3D model by blending knowledge from multiple pre-trained foundation models, achieving true open-vocabulary without facing constraints from original 3D datasets. Specifically, to learn the open-vocabulary 3D localization ability, we adopt the open-vocabulary localization knowledge of the Grounded-Segment-Anything model. For open-vocabulary 3D recognition ability, We leverage the knowledge of generative foundation models, including GPT-3 and Stable Diffusion models, and cross-modal discriminative models like CLIP. The experimental results on two popular benchmarks for open-vocabulary 3D object detection show that our model efficiently learns knowledge from multiple foundation models to enhance the open-vocabulary ability of the 3D model and successfully achieves state-of-the-art performance in open-vocabulary 3D object detection tasks. Code is released at https://github.com/dmzhang0425/FM-OV3D.git.
Abstract:Recently, Large Language Models (LLMs) and Multimodal Large Language Models (MLLMs) have shown promise in instruction following and 2D image understanding. While these models are powerful, they have not yet been developed to comprehend the more challenging 3D physical scenes, especially when it comes to the sparse outdoor LiDAR data. In this paper, we introduce LiDAR-LLM, which takes raw LiDAR data as input and harnesses the remarkable reasoning capabilities of LLMs to gain a comprehensive understanding of outdoor 3D scenes. The central insight of our LiDAR-LLM is the reformulation of 3D outdoor scene cognition as a language modeling problem, encompassing tasks such as 3D captioning, 3D grounding, 3D question answering, etc. Specifically, due to the scarcity of 3D LiDAR-text pairing data, we introduce a three-stage training strategy and generate relevant datasets, progressively aligning the 3D modality with the language embedding space of LLM. Furthermore, we design a View-Aware Transformer (VAT) to connect the 3D encoder with the LLM, which effectively bridges the modality gap and enhances the LLM's spatial orientation comprehension of visual features. Our experiments show that LiDAR-LLM possesses favorable capabilities to comprehend various instructions regarding 3D scenes and engage in complex spatial reasoning. LiDAR-LLM attains a 40.9 BLEU-1 on the 3D captioning task and achieves a 63.1\% classification accuracy and a 14.3\% BEV mIoU on the 3D grounding task. Web page: https://sites.google.com/view/lidar-llm
Abstract:Continual Test-Time Adaptation (CTTA) is proposed to migrate a source pre-trained model to continually changing target distributions, addressing real-world dynamism. Existing CTTA methods mainly rely on entropy minimization or teacher-student pseudo-labeling schemes for knowledge extraction in unlabeled target domains. However, dynamic data distributions cause miscalibrated predictions and noisy pseudo-labels in existing self-supervised learning methods, hindering the effective mitigation of error accumulation and catastrophic forgetting problems during the continual adaptation process. To tackle these issues, we propose a continual self-supervised method, Adaptive Distribution Masked Autoencoders (ADMA), which enhances the extraction of target domain knowledge while mitigating the accumulation of distribution shifts. Specifically, we propose a Distribution-aware Masking (DaM) mechanism to adaptively sample masked positions, followed by establishing consistency constraints between the masked target samples and the original target samples. Additionally, for masked tokens, we utilize an efficient decoder to reconstruct a hand-crafted feature descriptor (e.g., Histograms of Oriented Gradients), leveraging its invariant properties to boost task-relevant representations. Through conducting extensive experiments on four widely recognized benchmarks, our proposed method attains state-of-the-art performance in both classification and segmentation CTTA tasks.
Abstract:With the growing size of pre-trained models, full fine-tuning and storing all the parameters for various downstream tasks is costly and infeasible. In this paper, we propose a new parameter-efficient fine-tuning method, Gradient-based Parameter Selection (GPS), demonstrating that only tuning a few selected parameters from the pre-trained model while keeping the remainder of the model frozen can generate similar or better performance compared with the full model fine-tuning method. Different from the existing popular and state-of-the-art parameter-efficient fine-tuning approaches, our method does not introduce any additional parameters and computational costs during both the training and inference stages. Another advantage is the model-agnostic and non-destructive property, which eliminates the need for any other design specific to a particular model. Compared with the full fine-tuning, GPS achieves 3.33% (91.78% vs. 88.45%, FGVC) and 9.61% (73.1% vs. 65.57%, VTAB) improvement of the accuracy with tuning only 0.36% parameters of the pre-trained model on average over 24 image classification tasks; it also demonstrates a significant improvement of 17% and 16.8% in mDice and mIoU, respectively, on medical image segmentation task. Moreover, GPS achieves state-of-the-art performance compared with existing PEFT methods.