Abstract:Multi-agent artificial intelligence systems are increasingly deployed in clinical settings, yet the relationship between component-level optimization and system-wide performance remains poorly understood. We evaluated this relationship using 2,400 real patient cases from the MIMIC-CDM dataset across four abdominal pathologies (appendicitis, pancreatitis, cholecystitis, diverticulitis), decomposing clinical diagnosis into information gathering, interpretation, and differential diagnosis. We evaluated single agent systems (one model performing all tasks) against multi-agent systems (specialized models for each task) using comprehensive metrics spanning diagnostic outcomes, process adherence, and cost efficiency. Our results reveal a paradox: while multi-agent systems generally outperformed single agents, the component-optimized or Best of Breed system with superior components and excellent process metrics (85.5% information accuracy) significantly underperformed in diagnostic accuracy (67.7% vs. 77.4% for a top multi-agent system). This finding underscores that successful integration of AI in healthcare requires not just component level optimization but also attention to information flow and compatibility between agents. Our findings highlight the need for end to end system validation rather than relying on component metrics alone.
Abstract:Data selection is crucial for optimizing language model (LM) performance on specific tasks, yet most existing methods fail to effectively consider the target task distribution. Current approaches either ignore task-specific requirements entirely or rely on approximations that fail to capture the nuanced patterns needed for tasks like Autoformalization or code generation. Methods that do consider the target distribution often rely on simplistic, sometimes noisy, representations, like hashed n-gram features, which can lead to collisions and introduce noise. We introduce ZIP-FIT, a data selection framework that uses gzip compression to directly measure alignment between potential training data and the target task distribution. In extensive evaluations on Autoformalization and Python code generation, ZIP-FIT significantly outperforms leading baselines like DSIR and D4. Models trained on ZIP-FIT-selected data achieve their lowest cross-entropy loss up to 85.1\% faster than baselines, demonstrating that better task alignment leads to more efficient learning. In addition, ZIP-FIT performs selection up to 65.8\% faster than DSIR and two orders of magnitude faster than D4. Notably, ZIP-FIT shows that smaller, well-aligned datasets often outperform larger but less targeted ones, demonstrating that a small amount of higher quality data is superior to a large amount of lower quality data. Our results imply that task-aware data selection is crucial for efficient domain adaptation, and that compression offers a principled way to measure task alignment. By showing that targeted data selection can dramatically improve task-specific performance, our work provides new insights into the relationship between data quality, task alignment, and model learning efficiency.