Toward end-to-end mobile service provision with optimized network efficiency and quality of service, tremendous efforts have been devoted in upgrading mobile applications, transport and internet networks, and wireless communication networks for many years. However, the inherent loose coordination between different layers in the end-to-end communication networks leads to unreliable data transmission with uncontrollable packet delay and packet error rate, and a terrible waste of network resources incurred for data re-transmission. In an attempt to shed some lights on how to tackle these challenges, design methodologies and some solutions for deterministic end-to-end transmission for 6G and beyond are presented, which will bring a paradigm shift to the end-to-end wireless communication networks.
Open radio access network (ORAN) provides an open architecture to implement radio access network (RAN) of the fifth generation (5G) and beyond mobile communications. As a key technology for the evolution to the sixth generation (6G) systems, cell-free massive multiple-input multiple-output (CF-mMIMO) can effectively improve the spectrum efficiency, peak rate and reliability of wireless communication systems. Starting from scalable implementation of CF-mMIMO, we study a cell-free RAN (CF-RAN) under the ORAN architecture. Through theoretical analysis and numerical simulation, we investigate the uplink and downlink spectral efficiencies of CF-mMIMO with the new architecture. We then discuss the implementation issues of CF-RAN under ORAN architecture, including time-frequency synchronization and over-the-air reciprocity calibration, low layer splitting, deployment of ORAN radio units (O-RU), artificial intelligent based user associations. Finally, we present some representative experimental results for the uplink distributed reception and downlink coherent joint transmission of CF-RAN with commercial off-the-shelf O-RUs.