Abstract:Movable antenna (MA) has emerged as a promising technology to flexibly reconfigure wireless channels by adjusting antenna placement. In this paper, we study a secured dual-functional radar-communication (DFRC) system aided by movable antennas. To enhance the communication security, we aim to maximize the achievable sum rate by jointly optimizing the transmitter beamforming vectors, receiving filter, and antenna placement, subject to radar signal-to-noise ratio (SINR) and transmission covertness constraints. We consider multiple Willies operating in both non-colluding and colluding modes. For noncolluding Willies, we first employ a Lagrangian dual transformation procedure to reformulate the challenging optimization problem into a more tractable form. Subsequently, we develop an efficient block coordinate descent (BCD) algorithm that integrates semidefinite relaxation (SDR), projected gradient descent (PGD), Dinkelbach transformation, and successive convex approximation (SCA) techniques to tackle the resulting problem. For colluding Willies, we first derive the minimum detection error probability (DEP) by characterizing the optimal detection statistic, which is proven to follow the generalized Erlang distribution. Then, we develop a minimum mean square error (MMSE)-based algorithm to address the colluding detection problem. We further provide a comprehensive complexity analysis on the unified design framework. Simulation results demonstrate that the proposed method can significantly improve the covert sum rate, and achieve a superior balance between communication and radar performance compared with existing benchmark schemes.
Abstract:Complex electromagnetic interference increasingly compromises Global Navigation Satellite Systems (GNSS), threatening the reliability of Space-Air-Ground Integrated Networks (SAGIN). Although deep learning has advanced interference recognition, current static models suffer from a \textbf{fundamental limitation}: they impose a fixed computational topology regardless of the input's physical entropy. This rigidity leads to severe resource mismatch, where simple primitives consume the same processing cost as chaotic, saturated mixtures. To resolve this, this paper introduces PhyG-MoE (Physics-Guided Mixture-of-Experts), a framework designed to \textbf{dynamically align model capacity with signal complexity}. Unlike static architectures, the proposed system employs a spectrum-based gating mechanism that routes signals based on their spectral feature entanglement. A high-capacity TransNeXt expert is activated on-demand to disentangle complex features in saturated scenarios, while lightweight experts handle fundamental signals to minimize latency. Evaluations on 21 jamming categories demonstrate that PhyG-MoE achieves an overall accuracy of 97.58\%. By resolving the intrinsic conflict between static computing and dynamic electromagnetic environments, the proposed framework significantly reduces computational overhead without performance degradation, offering a viable solution for resource-constrained cognitive receivers.
Abstract:As the electromagnetic environment becomes increasingly complex, Global Navigation Satellite Systems (GNSS) face growing threats from sophisticated jamming interference. Although Deep Learning (DL) effectively identifies basic interference, classifying compound interference remains difficult due to the superposition of diverse jamming sources. Existing single-domain approaches often suffer from performance degradation because transient burst signals and continuous global signals require conflicting feature extraction scales. We propose the Selective Kernel and Asymmetric convolution Network(SKANet), a cognitive deep learning framework built upon a dual-stream architecture that integrates Time-Frequency Images (TFIs) and Power Spectral Density (PSD). Distinct from conventional fusion methods that rely on static receptive fields, the proposed architecture incorporates a Multi-Branch Selective Kernel (SK) module combined with Asymmetric Convolution Blocks (ACBs). This mechanism enables the network to dynamically adjust its receptive fields, acting as an adaptive filter that simultaneously captures micro-scale transient features and macro-scale spectral trends within entangled compound signals. To complement this spatial-temporal adaptation, a Squeeze-and-Excitation (SE) mechanism is integrated at the fusion stage to adaptively recalibrate the contribution of heterogeneous features from each modality. Evaluations on a dataset of 405,000 samples demonstrate that SKANet achieves an overall accuracy of 96.99\%, exhibiting superior robustness for compound jamming classification, particularly under low Jamming-to-Noise Ratio (JNR) regimes.
Abstract:Movable antenna (MA) has demonstrated great potential in enhancing wireless communication performance. In this paper, we investigate an MA-enabled multiple-input multiple-output (MIMO) communication system with spatial modulation (SM), which improves communication performance by utilizing flexible MA placement while reducing the cost of RF chains. To this end, we propose a joint transceiver design framework aimed at minimizing the bit error rate (BER) based on the maximum minimum distance (MMD) criterion. To address the intractable problem, we develop an efficient iterative algorithm based on alternating optimization (AO) and successive convex approximation (SCA) techniques. Simulation results demonstrate that the proposed algorithm achieves rapid convergence performance and significantly outperforms the existing benchmark schemes.




Abstract:This paper investigates a movable antenna (MA) enabled integrated sensing and communication (ISAC) system under the influence of antenna crosstalk. First, it generalizes the antenna crosstalk model from the conventional fixed-position antenna (FPA) system to the MA scenario. Then, a Cramer-Rao bound (CRB) minimization problem driven by joint beamforming and antenna position design is presented. Specifically, to address this highly non-convex flexible beamforming problem, we deploy a deep reinforcement learning (DRL) approach to train a flexible beamforming agent. To ensure stability during training, a Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm is adopted to balance exploration with reward maximization for efficient and reliable learning. Numerical results demonstrate that the proposed crosstalk-resilient (CR) algorithm enhances the overall ISAC performance compared to other benchmark schemes.
Abstract:Movable antennas (MAs) have demonstrated significant potential in enhancing the performance of dual-functional radar-communication (DFRC) systems. In this paper, we explore an MA-aided DFRC system that utilizes a reconfigurable intelligent surface (RIS) to enhance signal coverage for communications in dead zones. To enhance the radar sensing performance in practical DFRC environments, we propose a unified robust transceiver design framework aimed at maximizing the minimum radar signal-to-interference-plus-noise ratio (SINR) in a cluttered environment. Our approach jointly optimizes transmit beamforming, receive filtering, antenna placement, and RIS reflecting coefficients under imperfect channel state information (CSI) for both sensing and communication channels. To deal with the channel uncertainty-constrained issue, we leverage the convex hull method to transform the primal problem into a more tractable form. We then introduce a two-layer block coordinate descent (BCD) algorithm, incorporating fractional programming (FP), successive convex approximation (SCA), S-Lemma, and penalty techniques to reformulate it into a series of semidefinite program (SDP) subproblems that can be efficiently solved. We provide a comprehensive analysis of the convergence and computational complexity for the proposed design framework. Simulation results demonstrate the robustness of the proposed method, and show that the MA-based design framework can significantly enhance the radar SINR performance while achieving an effective balance between the radar and communication performance.




Abstract:Movable antennas (MAs) have shown significant potential in enhancing the performance of dual-functional radar-communication (DFRC) systems. In this paper, we investigate the MA-based transceiver design for DFRC systems, where a reconfigurable intelligent surface (RIS) is employed to enhance the communication quality in dead zones. To enhance the radar sensing performance, we formulate an optimization problem to maximize the radar signal-to-interference-plus-noise ratio (SINR) by jointly optimizing the beamforming vectors, receiving filter, antenna positions, and RIS reflecting coefficients. To tackle this challenging problem, we develop a fractional programming-based optimization framework, incorporating block coordinate descent (BCD), successive convex approximation (SCA), and penalty techniques. Simulation results demonstrate that the proposed method can significantly improve the radar SINR and achieve a satisfactory balance between the radar and communication performance compared with existing benchmark schemes.
Abstract:Cooperative-integrated sensing and communication (C-ISAC) networks have emerged as promising solutions for communication and target sensing. However, imperfect channel state information (CSI) estimation and time synchronization (TS) errors degrade performance, affecting communication and sensing accuracy. This paper addresses these challenges {by employing} {movable antennas} (MAs) to enhance C-ISAC robustness. We analyze the impact of CSI errors on achievable rates and introduce a hybrid Cramer-Rao lower bound (HCRLB) to evaluate the effect of TS errors on target localization accuracy. Based on these models, we derive the worst-case achievable rate and sensing precision under such errors. We optimize cooperative beamforming, {base station (BS)} selection factor and MA position to minimize power consumption while ensuring accuracy. {We then propose a} constrained deep reinforcement learning (C-DRL) approach to solve this non-convex optimization problem, using a modified deep deterministic policy gradient (DDPG) algorithm with a Wolpertinger architecture for efficient training under complex constraints. {Simulation results show that the proposed method significantly improves system robustness against CSI and TS errors, where robustness mean reliable data transmission under poor channel conditions.} These findings demonstrate the potential of MA technology to reduce power consumption in imperfect CSI and TS environments.




Abstract:Device-to-device (D2D)-assisted mobile edge computing (MEC) is one of the critical technologies of future sixth generation (6G) networks. The core of D2D-assisted MEC is to reduce system latency for network edge UEs by supporting cloud computing services, thereby achieving high-speed transmission. Due to the sensitivity of communication signals to obstacles, relaying is adopted to enhance the D2D-assisted MEC system's performance and its coverage area. However, relay nodes and the base station (BS) are typically equipped with large-scale antenna arrays. This increases the cost of relay-assisted D2D MEC systems and limits their deployment. Movable antenna (MA) technology is used to work around this limitation without compromising performance. Specifically, the core of MA technology lies in optimizing the antenna positions to increase system capacity. Therefore, this paper proposes a novel resource allocation scheme for MA-enhanced relay-assisted D2D MEC systems. Specifically, the MA positions and beamforming of user equipments (UEs), relay, and BS as well as the allocation of resources and the computation task offloading rate at the MEC server, all are optimized herein with the objective of minimizing the maximum latency while satisfying computation and communication rate constraints. Since this is a multivariable non-convex problem, a parallel and distributed penalty dual decomposition (PDD) based algorithm is developed and combined with successive convex approximation (SCA) to solve this non-convex problem. The results of extensive numerical analyses show that the proposed algorithm significantly improves the performance of the MA-enhanced relay-assisted D2D communication system compared to a counterpart where relays and the BS are equiped with traditional fixed-position antenna (FPA).




Abstract:Federated learning (FL) in wireless computing effectively utilizes communication bandwidth, yet it is vulnerable to errors during the analog aggregation process. While removing users with unfavorable channel conditions can mitigate these errors, it also reduces the available local training data for FL, which in turn hinders the convergence rate of the training process. To tackle this issue, we propose the use of movable antenna (MA) techniques to enhance the degrees of freedom within the channel space, ultimately boosting the convergence speed of FL training. Moreover, we develop a coordinated approach for uplink receiver beamforming, user selection, and MA positioning to optimize the convergence rate of wireless FL training in dynamic wireless environments. This stochastic optimization challenge is reformulated into a mixed-integer programming problem by utilizing the training loss upper bound. We then introduce a penalty dual decomposition (PDD) method to solve the mixed-integer mixed programming problem. Experimental results indicate that incorporating MA techniques significantly accelerates the training convergence of FL and greatly surpasses conventional methods.