Abstract:Terahertz (THz) extremely large-scale MIMO (XL-MIMO) is considered a key enabling technology for 6G and beyond due to its advantages such as wide bandwidth and high beam gain. As the frequency and array size increase, users are more likely to fall within the near-field (NF) region, where the far-field plane-wave assumption no longer holds. This also introduces spatial non-stationarity (SnS), as different antenna elements observe distinct multipath characteristics. Therefore, this paper proposes a THz XL-MIMO channel model that accounts for both NF propagation and SnS, validated using channel measurement data. In this work, we first conduct THz XL-MIMO channel measurements at 100 GHz and 132 GHz using 301- and 531-element ULAs in indoor environments, revealing pronounced NF effects characterized by nonlinear inter-element phase variations, as well as element-dependent delay and angle shifts. Moreover, the SnS phenomenon is observed, arising not only from blockage but also from inconsistent reflection or scattering. Based on these observations, a hybrid NF channel modeling approach combining the scatterer-excited point-source model and the specular reflection model is proposed to capture nonlinear phase variation. For SnS modeling, amplitude attenuation factors (AAFs) are introduced to characterize the continuous variation of path power across the array. By analyzing the statistical distribution and spatial autocorrelation properties of AAFs, a statistical rank-matching-based method is proposed for their generation. Finally, the model is validated using measured data. Evaluation across metrics such as entropy capacity, condition number, spatial correlation, channel gain, Rician K-factor, and RMS delay spread confirms that the proposed model closely aligns with measurements and effectively characterizes the essential features of THz XL-MIMO channels.
Abstract:Directional scanning sounding (DSS) has become widely adopted for high-frequency channel measurements because it effectively compensates for severe path loss. However, the resolution of existing multipath component (MPC) angle estimation methods is constrained by the DSS angle sampling interval. Therefore, this communication proposes a high-resolution MPC angle estimation method based on power-angle-delay profile (PADP) for DSS. By exploiting the mapping relationship between the power difference of adjacent angles in the PADP and MPC offset angle, the resolution of MPC angle estimation is refined, significantly enhancing the accuracy of MPC angle and amplitude estimation without increasing measurement complexity. Numerical simulation results demonstrate that the proposed method reduces the mean squared estimation errors of angle and amplitude by one order of magnitude compared to traditional omnidirectional synthesis methods. Furthermore, the estimation errors approach the Cram\'er-Rao Lower Bounds (CRLBs) derived for wideband DSS, thereby validating its superior performance in MPC angle and amplitude estimation. Finally, experiments conducted in an indoor scenario at 37.5 GHz validate the excellent performance of the proposed method in practical applications.
Abstract:As Extremely Large-Scale Multiple-Input-Multiple-Output (XL-MIMO) technology advances and frequency band rises, the near-field effects in communication are intensifying. A concise and accurate near-field XL-MIMO channel model serves as the cornerstone for investigating the near-field effects. However, existing angular domain XL-MIMO channel models under near-field conditions require non-closed-form wave-number domain integrals for computation, which is complicated. To obtain a more succinct channel model, this paper introduces a closed-form approximate expression based on the principle of stationary phase. It was subsequently shown that when the scatterer distance is larger than the array aperture, the closed-form model can be further simplified as a trapezoidal spectrum. We validate the accuracy of the proposed approximation through simulations of power angular spectrum similarity. The results indicate that the proposed approximation can accurately approximate the near-field angular domain channel within the effective Rayleigh distance.
Abstract:Technology research and standardization work of sixth generation (6G) has been carried out worldwide. Channel research is the prerequisite of 6G technology evaluation and optimization. This paper presents a survey and tutorial on channel measurement, modeling, and simulation for 6G. We first highlight the challenges of channel for 6G systems, including higher frequency band, extremely large antenna array, new technology combinations, and diverse application scenarios. A review of channel measurement and modeling for four possible 6G enabling technologies is then presented, i.e., terahertz communication, massive multiple-input multiple-output communication, joint communication and sensing, and reconfigurable intelligent surface. Finally, we introduce a 6G channel simulation platform and provide examples of its implementation. The goal of this paper is to help both professionals and non-professionals know the progress of 6G channel research, understand the 6G channel model, and use it for 6G simulation.