Abstract:Retrieval-augmented generation (RAG) effectively addresses issues of static knowledge and hallucination in large language models. Existing studies mostly focus on question scenarios with clear user intents and concise answers. However, it is prevalent that users issue broad, open-ended queries with diverse sub-intents, for which they desire rich and long-form answers covering multiple relevant aspects. To tackle this important yet underexplored problem, we propose a novel RAG framework, namely RichRAG. It includes a sub-aspect explorer to identify potential sub-aspects of input questions, a multi-faceted retriever to build a candidate pool of diverse external documents related to these sub-aspects, and a generative list-wise ranker, which is a key module to provide the top-k most valuable documents for the final generator. These ranked documents sufficiently cover various query aspects and are aware of the generator's preferences, hence incentivizing it to produce rich and comprehensive responses for users. The training of our ranker involves a supervised fine-tuning stage to ensure the basic coverage of documents, and a reinforcement learning stage to align downstream LLM's preferences to the ranking of documents. Experimental results on two publicly available datasets prove that our framework effectively and efficiently provides comprehensive and satisfying responses to users.
Abstract:Model generalization ability upon incrementally acquiring dynamically updating knowledge from sequentially arriving tasks is crucial to tackle the sensitivity-stability dilemma in Continual Learning (CL). Weight loss landscape sharpness minimization seeking for flat minima lying in neighborhoods with uniform low loss or smooth gradient is proven to be a strong training regime improving model generalization compared with loss minimization based optimizer like SGD. Yet only a few works have discussed this training regime for CL, proving that dedicated designed zeroth-order sharpness optimizer can improve CL performance. In this work, we propose a Continual Flatness (C-Flat) method featuring a flatter loss landscape tailored for CL. C-Flat could be easily called with only one line of code and is plug-and-play to any CL methods. A general framework of C-Flat applied to all CL categories and a thorough comparison with loss minima optimizer and flat minima based CL approaches is presented in this paper, showing that our method can boost CL performance in almost all cases. Code will be publicly available upon publication.
Abstract:Large language models (LLMs) have demonstrated remarkable performance on a variety of natural language tasks based on just a few examples of natural language instructions, reducing the need for extensive feature engineering. However, most powerful LLMs are closed-source or limited in their capability for languages other than English. In this technical report, we present Baichuan 2, a series of large-scale multilingual language models containing 7 billion and 13 billion parameters, trained from scratch, on 2.6 trillion tokens. Baichuan 2 matches or outperforms other open-source models of similar size on public benchmarks like MMLU, CMMLU, GSM8K, and HumanEval. Furthermore, Baichuan 2 excels in vertical domains such as medicine and law. We will release all pre-training model checkpoints to benefit the research community in better understanding the training dynamics of Baichuan 2.
Abstract:Learning from changing tasks and sequential experience without forgetting the obtained knowledge is a challenging problem for artificial neural networks. In this work, we focus on two challenging problems in the paradigm of Continual Learning (CL) without involving any old data: (i) the accumulation of catastrophic forgetting caused by the gradually fading knowledge space from which the model learns the previous knowledge; (ii) the uncontrolled tug-of-war dynamics to balance the stability and plasticity during the learning of new tasks. In order to tackle these problems, we present Progressive Learning without Forgetting (PLwF) and a credit assignment regime in the optimizer. PLwF densely introduces model functions from previous tasks to construct a knowledge space such that it contains the most reliable knowledge on each task and the distribution information of different tasks, while credit assignment controls the tug-of-war dynamics by removing gradient conflict through projection. Extensive ablative experiments demonstrate the effectiveness of PLwF and credit assignment. In comparison with other CL methods, we report notably better results even without relying on any raw data.
Abstract:Traditional object detectors are ill-equipped for incremental learning. However, fine-tuning directly on a well-trained detection model with only new data will lead to catastrophic forgetting. Knowledge distillation is a flexible way to mitigate catastrophic forgetting. In Incremental Object Detection (IOD), previous work mainly focuses on distilling for the combination of features and responses. However, they under-explore the information that contains in responses. In this paper, we propose a response-based incremental distillation method, dubbed Elastic Response Distillation (ERD), which focuses on elastically learning responses from the classification head and the regression head. Firstly, our method transfers category knowledge while equipping student detector with the ability to retain localization information during incremental learning. In addition, we further evaluate the quality of all locations and provide valuable responses by the Elastic Response Selection (ERS) strategy. Finally, we elucidate that the knowledge from different responses should be assigned with different importance during incremental distillation. Extensive experiments conducted on MS COCO demonstrate our method achieves state-of-the-art result, which substantially narrows the performance gap towards full training.
Abstract:Human-Object Interaction (HOI) detection is an essential task to understand human-centric images from a fine-grained perspective. Although end-to-end HOI detection models thrive, their paradigm of parallel human/object detection and verb class prediction loses two-stage methods' merit: object-guided hierarchy. The object in one HOI triplet gives direct clues to the verb to be predicted. In this paper, we aim to boost end-to-end models with object-guided statistical priors. Specifically, We propose to utilize a Verb Semantic Model (VSM) and use semantic aggregation to profit from this object-guided hierarchy. Similarity KL (SKL) loss is proposed to optimize VSM to align with the HOI dataset's priors. To overcome the static semantic embedding problem, we propose to generate cross-modality-aware visual and semantic features by Cross-Modal Calibration (CMC). The above modules combined composes Object-guided Cross-modal Calibration Network (OCN). Experiments conducted on two popular HOI detection benchmarks demonstrate the significance of incorporating the statistical prior knowledge and produce state-of-the-art performances. More detailed analysis indicates proposed modules serve as a stronger verb predictor and a more superior method of utilizing prior knowledge. The codes are available at \url{https://github.com/JacobYuan7/OCN-HOI-Benchmark}.
Abstract:Traditional object detection are ill-equipped for incremental learning. However, fine-tuning directly on a well-trained detection model with only new data will leads to catastrophic forgetting. Knowledge distillation is a straightforward way to mitigate catastrophic forgetting. In Incremental Object Detection (IOD), previous work mainly focuses on feature-level knowledge distillation, but the different response of detector has not been fully explored yet. In this paper, we propose a fully response-based incremental distillation method focusing on learning response from detection bounding boxes and classification predictions. Firstly, our method transferring category knowledge while equipping student model with the ability to retain localization knowledge during incremental learning. In addition, we further evaluate the qualities of all locations and provides valuable response by adaptive pseudo-label selection (APS) strategies. Finally, we elucidate that knowledge from different responses should be assigned with different importance during incremental distillation. Extensive experiments conducted on MS COCO demonstrate significant advantages of our method, which substantially narrow the performance gap towards full training.
Abstract:Group activity recognition aims to understand the activity performed by a group of people. In order to solve it, modeling complex spatio-temporal interactions is the key. Previous methods are limited in reasoning on a predefined graph, which ignores the inherent person-specific interaction context. Moreover, they adopt inference schemes that are computationally expensive and easily result in the over-smoothing problem. In this paper, we manage to achieve spatio-temporal person-specific inferences by proposing Dynamic Inference Network (DIN), which composes of Dynamic Relation (DR) module and Dynamic Walk (DW) module. We firstly propose to initialize interaction fields on a primary spatio-temporal graph. Within each interaction field, we apply DR to predict the relation matrix and DW to predict the dynamic walk offsets in a joint-processing manner, thus forming a person-specific interaction graph. By updating features on the specific graph, a person can possess a global-level interaction field with a local initialization. Experiments indicate both modules' effectiveness. Moreover, DIN achieves significant improvement compared to previous state-of-the-art methods on two popular datasets under the same setting, while costing much less computation overhead of the reasoning module.