



Abstract:Denoising Diffusion Probabilistic Model (DDPM) has shown great competence in image and audio generation tasks. However, there exist few attempts to employ DDPM in the text generation, especially review generation under recommendation systems. Fueled by the predicted reviews explainability that justifies recommendations could assist users better understand the recommended items and increase the transparency of recommendation system, we propose a Diffusion Model-based Review Generation towards EXplainable Recommendation named Diffusion-EXR. Diffusion-EXR corrupts the sequence of review embeddings by incrementally introducing varied levels of Gaussian noise to the sequence of word embeddings and learns to reconstruct the original word representations in the reverse process. The nature of DDPM enables our lightweight Transformer backbone to perform excellently in the recommendation review generation task. Extensive experimental results have demonstrated that Diffusion-EXR can achieve state-of-the-art review generation for recommendation on two publicly available benchmark datasets.
Abstract:Transformer-based models for anomaly detection in multivariate time series can benefit from the self-attention mechanism due to its advantage in modeling long-term dependencies. However, Transformer-based anomaly detection models have problems such as a large amount of data being required for training, standard positional encoding is not suitable for multivariate time series data, and the interdependence between time series is not considered. To address these limitations, we propose a novel anomaly detection method, named EdgeConvFormer, which integrates Time2vec embedding, stacked dynamic graph CNN, and Transformer to extract global and local spatial-time information. This design of EdgeConvFormer empowers it with decomposition capacities for complex time series, progressive spatiotemporal correlation discovery between time series, and representation aggregation of multi-scale features. Experiments demonstrate that EdgeConvFormer can learn the spatial-temporal correlations from multivariate time series data and achieve better anomaly detection performance than the state-of-the-art approaches on many real-world datasets of different scales.




Abstract:Offline meta-reinforcement learning (OMRL) utilizes pre-collected offline datasets to enhance the agent's generalization ability on unseen tasks. However, the context shift problem arises due to the distribution discrepancy between the contexts used for training (from the behavior policy) and testing (from the exploration policy). The context shift problem leads to incorrect task inference and further deteriorates the generalization ability of the meta-policy. Existing OMRL methods either overlook this problem or attempt to mitigate it with additional information. In this paper, we propose a novel approach called Context Shift Reduction for OMRL (CSRO) to address the context shift problem with only offline datasets. The key insight of CSRO is to minimize the influence of policy in context during both the meta-training and meta-test phases. During meta-training, we design a max-min mutual information representation learning mechanism to diminish the impact of the behavior policy on task representation. In the meta-test phase, we introduce the non-prior context collection strategy to reduce the effect of the exploration policy. Experimental results demonstrate that CSRO significantly reduces the context shift and improves the generalization ability, surpassing previous methods across various challenging domains.




Abstract:In the field of multi-task reinforcement learning, the modular principle, which involves specializing functionalities into different modules and combining them appropriately, has been widely adopted as a promising approach to prevent the negative transfer problem that performance degradation due to conflicts between tasks. However, most of the existing multi-task RL methods only combine shared modules at the task level, ignoring that there may be conflicts within the task. In addition, these methods do not take into account that without constraints, some modules may learn similar functions, resulting in restricting the model's expressiveness and generalization capability of modular methods. In this paper, we propose the Contrastive Modules with Temporal Attention(CMTA) method to address these limitations. CMTA constrains the modules to be different from each other by contrastive learning and combining shared modules at a finer granularity than the task level with temporal attention, alleviating the negative transfer within the task and improving the generalization ability and the performance for multi-task RL. We conducted the experiment on Meta-World, a multi-task RL benchmark containing various robotics manipulation tasks. Experimental results show that CMTA outperforms learning each task individually for the first time and achieves substantial performance improvements over the baselines.




Abstract:Deep reinforcement learning (DRL) has led to a wide range of advances in sequential decision-making tasks. However, the complexity of neural network policies makes it difficult to understand and deploy with limited computational resources. Currently, employing compact symbolic expressions as symbolic policies is a promising strategy to obtain simple and interpretable policies. Previous symbolic policy methods usually involve complex training processes and pre-trained neural network policies, which are inefficient and limit the application of symbolic policies. In this paper, we propose an efficient gradient-based learning method named Efficient Symbolic Policy Learning (ESPL) that learns the symbolic policy from scratch in an end-to-end way. We introduce a symbolic network as the search space and employ a path selector to find the compact symbolic policy. By doing so we represent the policy with a differentiable symbolic expression and train it in an off-policy manner which further improves the efficiency. In addition, in contrast with previous symbolic policies which only work in single-task RL because of complexity, we expand ESPL on meta-RL to generate symbolic policies for unseen tasks. Experimentally, we show that our approach generates symbolic policies with higher performance and greatly improves data efficiency for single-task RL. In meta-RL, we demonstrate that compared with neural network policies the proposed symbolic policy achieves higher performance and efficiency and shows the potential to be interpretable.




Abstract:Large language models (LLMs) show their powerful automatic reasoning and planning capability with a wealth of semantic knowledge about the human world. However, the grounding problem still hinders the applications of LLMs in the real-world environment. Existing studies try to fine-tune the LLM or utilize pre-defined behavior APIs to bridge the LLMs and the environment, which not only costs huge human efforts to customize for every single task but also weakens the generality strengths of LLMs. To autonomously ground the LLM onto the environment, we proposed the Self-Driven Grounding (SDG) framework to automatically and progressively ground the LLM with self-driven skill learning. SDG first employs the LLM to propose the hypothesis of sub-goals to achieve tasks and then verify the feasibility of the hypothesis via interacting with the underlying environment. Once verified, SDG can then learn generalized skills with the guidance of these successfully grounded subgoals. These skills can be further utilized to accomplish more complex tasks which fail to pass the verification phase. Verified in the famous instruction following task set-BabyAI, SDG achieves comparable performance in the most challenging tasks compared with imitation learning methods that cost millions of demonstrations, proving the effectiveness of learned skills and showing the feasibility and efficiency of our framework.




Abstract:Design activity -- constructing an artifact description satisfying given goals and constraints -- distinguishes humanity from other animals and traditional machines, and endowing machines with design abilities at the human level or beyond has been a long-term pursuit. Though machines have already demonstrated their abilities in designing new materials, proteins, and computer programs with advanced artificial intelligence (AI) techniques, the search space for designing such objects is relatively small, and thus, "Can machines design like humans?" remains an open question. To explore the boundary of machine design, here we present a new AI approach to automatically design a central processing unit (CPU), the brain of a computer, and one of the world's most intricate devices humanity have ever designed. This approach generates the circuit logic, which is represented by a graph structure called Binary Speculation Diagram (BSD), of the CPU design from only external input-output observations instead of formal program code. During the generation of BSD, Monte Carlo-based expansion and the distance of Boolean functions are used to guarantee accuracy and efficiency, respectively. By efficiently exploring a search space of unprecedented size 10^{10^{540}}, which is the largest one of all machine-designed objects to our best knowledge, and thus pushing the limits of machine design, our approach generates an industrial-scale RISC-V CPU within only 5 hours. The taped-out CPU successfully runs the Linux operating system and performs comparably against the human-designed Intel 80486SX CPU. In addition to learning the world's first CPU only from input-output observations, which may reform the semiconductor industry by significantly reducing the design cycle, our approach even autonomously discovers human knowledge of the von Neumann architecture.




Abstract:Domain adaptive object detection (DAOD) aims to generalize detectors trained on an annotated source domain to an unlabelled target domain. However, existing methods focus on reducing the domain bias of the detection backbone by inferring a discriminative visual encoder, while ignoring the domain bias in the detection head. Inspired by the high generalization of vision-language models (VLMs), applying a VLM as the robust detection backbone following a domain-aware detection head is a reasonable way to learn the discriminative detector for each domain, rather than reducing the domain bias in traditional methods. To achieve the above issue, we thus propose a novel DAOD framework named Domain-Aware detection head with Prompt tuning (DA-Pro), which applies the learnable domain-adaptive prompt to generate the dynamic detection head for each domain. Formally, the domain-adaptive prompt consists of the domain-invariant tokens, domain-specific tokens, and the domain-related textual description along with the class label. Furthermore, two constraints between the source and target domains are applied to ensure that the domain-adaptive prompt can capture the domains-shared and domain-specific knowledge. A prompt ensemble strategy is also proposed to reduce the effect of prompt disturbance. Comprehensive experiments over multiple cross-domain adaptation tasks demonstrate that using the domain-adaptive prompt can produce an effectively domain-related detection head for boosting domain-adaptive object detection.
Abstract:Evaluating the performance of low-light image enhancement (LLE) is highly subjective, thus making integrating human preferences into image enhancement a necessity. Existing methods fail to consider this and present a series of potentially valid heuristic criteria for training enhancement models. In this paper, we propose a new paradigm, i.e., aesthetics-guided low-light image enhancement (ALL-E), which introduces aesthetic preferences to LLE and motivates training in a reinforcement learning framework with an aesthetic reward. Each pixel, functioning as an agent, refines itself by recursive actions, i.e., its corresponding adjustment curve is estimated sequentially. Extensive experiments show that integrating aesthetic assessment improves both subjective experience and objective evaluation. Our results on various benchmarks demonstrate the superiority of ALL-E over state-of-the-art methods.
Abstract:Deep learning needs high-precision handling of forwarding signals, backpropagating errors, and updating weights. This is inherently required by the learning algorithm since the gradient descent learning rule relies on the chain product of partial derivatives. However, it is challenging to implement deep learning in hardware systems that use noisy analog memristors as artificial synapses, as well as not being biologically plausible. Memristor-based implementations generally result in an excessive cost of neuronal circuits and stringent demands for idealized synaptic devices. Here, we demonstrate that the requirement for high precision is not necessary and that more efficient deep learning can be achieved when this requirement is lifted. We propose a binary stochastic learning algorithm that modifies all elementary neural network operations, by introducing (i) stochastic binarization of both the forwarding signals and the activation function derivatives, (ii) signed binarization of the backpropagating errors, and (iii) step-wised weight updates. Through an extensive hybrid approach of software simulation and hardware experiments, we find that binary stochastic deep learning systems can provide better performance than the software-based benchmarks using the high-precision learning algorithm. Also, the binary stochastic algorithm strongly simplifies the neural network operations in hardware, resulting in an improvement of the energy efficiency for the multiply-and-accumulate operations by more than three orders of magnitudes.