Abstract:Large models recently are widely applied in artificial intelligence, so efficient training of large models has received widespread attention. More recently, a useful Muon optimizer is specifically designed for matrix-structured parameters of large models. Although some works have begun to studying Muon optimizer, the existing Muon and its variants still suffer from high sample complexity or high memory for large models. To fill this gap, we propose a light and fast Muon (LiMuon) optimizer for training large models, which builds on the momentum-based variance reduced technique and randomized Singular Value Decomposition (SVD). Our LiMuon optimizer has a lower memory than the current Muon and its variants. Moreover, we prove that our LiMuon has a lower sample complexity of $O(\epsilon^{-3})$ for finding an $\epsilon$-stationary solution of non-convex stochastic optimization under the smooth condition. Recently, the existing convergence analysis of Muon optimizer mainly relies on the strict Lipschitz smooth assumption, while some artificial intelligence tasks such as training large language models (LLMs) do not satisfy this condition. We also proved that our LiMuon optimizer has a sample complexity of $O(\epsilon^{-3})$ under the generalized smooth condition. Numerical experimental results on training DistilGPT2 and ViT models verify efficiency of our LiMuon optimizer.
Abstract:Continual learning (CL) involves acquiring and accumulating knowledge from evolving tasks while alleviating catastrophic forgetting. Recently, leveraging contrastive loss to construct more transferable and less forgetful representations has been a promising direction in CL. Despite advancements, their performance is still limited due to confusion arising from both inter-task and intra-task features. To address the problem, we propose a simple yet effective contrastive strategy named \textbf{G}lobal \textbf{P}re-fixing, \textbf{L}ocal \textbf{A}djusting for \textbf{S}upervised \textbf{C}ontrastive learning (GPLASC). Specifically, to avoid task-level confusion, we divide the entire unit hypersphere of representations into non-overlapping regions, with the centers of the regions forming an inter-task pre-fixed \textbf{E}quiangular \textbf{T}ight \textbf{F}rame (ETF). Meanwhile, for individual tasks, our method helps regulate the feature structure and form intra-task adjustable ETFs within their respective allocated regions. As a result, our method \textit{simultaneously} ensures discriminative feature structures both between tasks and within tasks and can be seamlessly integrated into any existing contrastive continual learning framework. Extensive experiments validate its effectiveness.
Abstract:Multi-Label Online Continual Learning (MOCL) requires models to learn continuously from endless multi-label data streams, facing complex challenges including persistent catastrophic forgetting, potential missing labels, and uncontrollable imbalanced class distributions. While existing MOCL methods attempt to address these challenges through various techniques, \textit{they all overlook label-specific region identifying and feature learning} - a fundamental solution rooted in multi-label learning but challenging to achieve in the online setting with incremental and partial supervision. To this end, we first leverage the inherent structural information of input data to evaluate and verify the innate localization capability of different pre-trained models. Then, we propose CUTER (CUT-out-and-Experience-Replay), a simple yet versatile strategy that provides fine-grained supervision signals by further identifying, strengthening and cutting out label-specific regions for efficient experience replay. It not only enables models to simultaneously address catastrophic forgetting, missing labels, and class imbalance challenges, but also serves as an orthogonal solution that seamlessly integrates with existing approaches. Extensive experiments on multiple multi-label image benchmarks demonstrate the superiority of our proposed method. The code is available at \href{https://github.com/wxr99/Cut-Replay}{https://github.com/wxr99/Cut-Replay}
Abstract:Using unlabeled wild data containing both in-distribution (ID) and out-of-distribution (OOD) data to improve the safety and reliability of models has recently received increasing attention. Existing methods either design customized losses for labeled ID and unlabeled wild data then perform joint optimization, or first filter out OOD data from the latter then learn an OOD detector. While achieving varying degrees of success, two potential issues remain: (i) Labeled ID data typically dominates the learning of models, inevitably making models tend to fit OOD data as IDs; (ii) The selection of thresholds for identifying OOD data in unlabeled wild data usually faces dilemma due to the unavailability of pure OOD samples. To address these issues, we propose a novel loss-difference OOD detection framework (LoD) by \textit{intentionally label-noisifying} unlabeled wild data. Such operations not only enable labeled ID data and OOD data in unlabeled wild data to jointly dominate the models' learning but also ensure the distinguishability of the losses between ID and OOD samples in unlabeled wild data, allowing the classic clustering technique (e.g., K-means) to filter these OOD samples without requiring thresholds any longer. We also provide theoretical foundation for LoD's viability, and extensive experiments verify its superiority.
Abstract:Based on the success of large-scale visual foundation models like CLIP in various downstream tasks, this paper initially attempts to explore their impact on Long-Tailed Semi-Supervised Learning (LTSSL) by employing the foundation model with three strategies: Linear Probing (LP), Lightweight Fine-Tuning (LFT), and Full Fine-Tuning (FFT). Our analysis presents the following insights: i) Compared to LTSSL algorithms trained from scratch, FFT results in a decline in model performance, whereas LP and LFT, although boosting overall model performance, exhibit negligible benefits to tail classes. ii) LP produces numerous false pseudo-labels due to \textit{underlearned} training data, while LFT can reduce the number of these false labels but becomes overconfident about them owing to \textit{biased fitting} training data. This exacerbates the pseudo-labeled and classifier biases inherent in LTSSL, limiting performance improvement in the tail classes. With these insights, we propose a Unbiased Lightweight Fine-tuning strategy, \textbf{ULFine}, which mitigates the overconfidence via confidence-aware adaptive fitting of textual prototypes and counteracts the pseudo-labeled and classifier biases via complementary fusion of dual logits. Extensive experiments demonstrate that ULFine markedly decreases training costs by over ten times and substantially increases prediction accuracies compared to state-of-the-art methods.
Abstract:Out-of-distribution detection (OOD) is a pivotal task for real-world applications that trains models to identify samples that are distributionally different from the in-distribution (ID) data during testing. Recent advances in AI, particularly Vision-Language Models (VLMs) like CLIP, have revolutionized OOD detection by shifting from traditional unimodal image detectors to multimodal image-text detectors. This shift has inspired extensive research; however, existing categorization schemes (e.g., few- or zero-shot types) still rely solely on the availability of ID images, adhering to a unimodal paradigm. To better align with CLIP's cross-modal nature, we propose a new categorization framework rooted in both image and text modalities. Specifically, we categorize existing methods based on how visual and textual information of OOD data is utilized within image + text modalities, and further divide them into four groups: OOD Images (i.e., outliers) Seen or Unseen, and OOD Texts (i.e., learnable vectors or class names) Known or Unknown, across two training strategies (i.e., train-free or training-required). More importantly, we discuss open problems in CLIP-like OOD detection and highlight promising directions for future research, including cross-domain integration, practical applications, and theoretical understanding.
Abstract:Recent studies have verified that semi-supervised learning (SSL) is vulnerable to data poisoning backdoor attacks. Even a tiny fraction of contaminated training data is sufficient for adversaries to manipulate up to 90\% of the test outputs in existing SSL methods. Given the emerging threat of backdoor attacks designed for SSL, this work aims to protect SSL against such risks, marking it as one of the few known efforts in this area. Specifically, we begin by identifying that the spurious correlations between the backdoor triggers and the target class implanted by adversaries are the primary cause of manipulated model predictions during the test phase. To disrupt these correlations, we utilize three key techniques: Gaussian Filter, complementary learning and trigger mix-up, which collectively filter, obstruct and dilute the influence of backdoor attacks in both data pre-processing and feature learning. Experimental results demonstrate that our proposed method, Backdoor Invalidator (BI), significantly reduces the average attack success rate from 84.7\% to 1.8\% across different state-of-the-art backdoor attacks. It is also worth mentioning that BI does not sacrifice accuracy on clean data and is supported by a theoretical guarantee of its generalization capability.
Abstract:Irregularly sampled multivariate time series (ISMTS) are prevalent in reality. Due to their non-uniform intervals between successive observations and varying sampling rates among series, the channel-independent (CI) strategy, which has been demonstrated more desirable for complete multivariate time series forecasting in recent studies, has failed. This failure can be further attributed to the sampling sparsity, which provides insufficient information for effective CI learning, thereby reducing its capacity. When we resort to the channel-dependent (CD) strategy, even higher capacity cannot mitigate the potential loss of diversity in learning similar embedding patterns across different channels. We find that existing work considers CI and CD strategies to be mutually exclusive, primarily because they apply these strategies to the global channel. However, we hold the view that channel strategies do not necessarily have to be used globally. Instead, by appropriately applying them locally and globally, we can create an opportunity to take full advantage of both strategies. This leads us to introduce the Channel Harmony ISMTS Transformer (TimeCHEAT), which utilizes the CD locally and the CI globally. Specifically, we segment the ISMTS into sub-series level patches. Locally, the CD strategy aggregates information within each patch for time embedding learning, maximizing the use of relevant observations while reducing long-range irrelevant interference. Here, we enhance generality by transforming embedding learning into an edge weight prediction task using bipartite graphs, eliminating the need for special prior knowledge. Globally, the CI strategy is applied across patches, allowing the Transformer to learn individualized attention patterns for each channel. Experimental results indicate our proposed TimeCHEAT demonstrates competitive SOTA performance across three mainstream tasks.
Abstract:Domain generalization addresses domain shift in real-world applications. Most approaches adopt a domain angle, seeking invariant representation across domains by aligning their marginal distributions, irrespective of individual classes, naturally leading to insufficient exploration of discriminative information. Switching to a class angle, we find that multiple domain-related peaks or clusters within the same individual classes must emerge due to distribution shift. In other words, marginal alignment does not guarantee conditional alignment, leading to suboptimal generalization. Therefore, we argue that acquiring discriminative generalization between classes within domains is crucial. In contrast to seeking distribution alignment, we endeavor to safeguard domain-related between-class discrimination. To this end, we devise a novel Conjugate Consistent Enhanced Module, namely Con2EM, based on a distribution over domains, i.e., a meta-distribution. Specifically, we employ a novel distribution-level Universum strategy to generate supplementary diverse domain-related class-conditional distributions, thereby enhancing generalization. This allows us to resample from these generated distributions to provide feedback to the primordial instance-level classifier, further improving its adaptability to the target-agnostic. To ensure generation accuracy, we establish an additional distribution-level classifier to regularize these conditional distributions. Extensive experiments have been conducted to demonstrate its effectiveness and low computational cost compared to SOTAs.
Abstract:Irregularly sampled multivariate time series (ISMTS) are prevalent in reality. Most existing methods treat ISMTS as synchronized regularly sampled time series with missing values, neglecting that the irregularities are primarily attributed to variations in sampling rates. In this paper, we introduce a novel perspective that irregularity is essentially relative in some senses. With sampling rates artificially determined from low to high, an irregularly sampled time series can be transformed into a hierarchical set of relatively regular time series from coarse to fine. We observe that additional coarse-grained relatively regular series not only mitigate the irregularly sampled challenges to some extent but also incorporate broad-view temporal information, thereby serving as a valuable asset for representation learning. Therefore, following the philosophy of learning that Seeing the big picture first, then delving into the details, we present the Multi-Scale and Multi-Correlation Attention Network (MuSiCNet) combining multiple scales to iteratively refine the ISMTS representation. Specifically, within each scale, we explore time attention and frequency correlation matrices to aggregate intra- and inter-series information, naturally enhancing the representation quality with richer and more intrinsic details. While across adjacent scales, we employ a representation rectification method containing contrastive learning and reconstruction results adjustment to further improve representation consistency. MuSiCNet is an ISMTS analysis framework that competitive with SOTA in three mainstream tasks consistently, including classification, interpolation, and forecasting.