Abstract:Interpretability is significant in computational pathology, leading to the development of multimodal information integration from histopathological image and corresponding text data.However, existing multimodal methods have limited interpretability due to the lack of high-quality dataset that support explicit reasoning and inference and simple reasoning process.To address the above problems, we introduce a novel multimodal pathology large language model with strong reasoning capabilities.To improve the generation of accurate and contextually relevant textual descriptions, we design a semantic reward strategy integrated with group relative policy optimization.We construct a high-quality pathology visual question answering (VQA) dataset, specifically designed to support complex reasoning tasks.Comprehensive experiments conducted on this dataset demonstrate that our method outperforms state-of-the-art methods, even when trained with only 20% of the data.Our method also achieves comparable performance on downstream zero-shot image classification task compared with CLIP.
Abstract:Accurate localization in Orthogonal Frequency Division Multiplexing (OFDM)-based massive Multiple-Input Multiple-Output (MIMO) systems depends critically on phase coherence across subcarriers and antennas. However, practical systems suffer from frequency-dependent and (spatial) antenna-dependent phase offsets, degrading localization accuracy. This paper analytically studies the impact of phase incoherence on localization performance under a static User Equipment (UE) and Line-of-Sight (LoS) scenario. We use two complementary tools. First, we derive the Cramér-Rao Lower Bound (CRLB) to quantify the theoretical limits under phase offsets. Then, we develop a Spatial Ambiguity Function (SAF)-based model to characterize ambiguity patterns. Simulation results reveal that spatial phase offsets severely degrade localization performance, while frequency phase offsets have a minor effect in the considered system configuration. To address this, we propose a robust Channel State Information (CSI) calibration framework and validate it using real-world measurements from a practical massive MIMO testbed. The experimental results confirm that the proposed calibration framework significantly improves the localization Root Mean Squared Error (RMSE) from 5 m to 1.2 cm, aligning well with the theoretical predictions.
Abstract:To fully exploit depth cues in Camouflaged Object Detection (COD), we present DGA-Net, a specialized framework that adapts the Segment Anything Model (SAM) via a novel ``depth prompting" paradigm. Distinguished from existing approaches that primarily rely on sparse prompts (e.g., points or boxes), our method introduces a holistic mechanism for constructing and propagating dense depth prompts. Specifically, we propose a Cross-modal Graph Enhancement (CGE) module that synthesizes RGB semantics and depth geometric within a heterogeneous graph to form a unified guidance signal. Furthermore, we design an Anchor-Guided Refinement (AGR) module. To counteract the inherent information decay in feature hierarchies, AGR forges a global anchor and establishes direct non-local pathways to broadcast this guidance from deep to shallow layers, ensuring precise and consistent segmentation. Quantitative and qualitative experimental results demonstrate that our proposed DGA-Net outperforms the state-of-the-art COD methods.
Abstract:We propose a real-time 3D human pose estimation and motion analysis method termed RePose for rehabilitation training. It is capable of real-time monitoring and evaluation of patients'motion during rehabilitation, providing immediate feedback and guidance to assist patients in executing rehabilitation exercises correctly. Firstly, we introduce a unified pipeline for end-to-end real-time human pose estimation and motion analysis using RGB video input from multiple cameras which can be applied to the field of rehabilitation training. The pipeline can help to monitor and correct patients'actions, thus aiding them in regaining muscle strength and motor functions. Secondly, we propose a fast tracking method for medical rehabilitation scenarios with multiple-person interference, which requires less than 1ms for tracking for a single frame. Additionally, we modify SmoothNet for real-time posture estimation, effectively reducing pose estimation errors and restoring the patient's true motion state, making it visually smoother. Finally, we use Unity platform for real-time monitoring and evaluation of patients' motion during rehabilitation, and to display the muscle stress conditions to assist patients with their rehabilitation training.
Abstract:Text-to-3D generation often suffers from the Janus problem, where objects look correct from the front but collapse into duplicated or distorted geometry from other angles. We attribute this failure to viewpoint bias in 2D diffusion priors, which propagates into 3D optimization. To address this, we propose Structural Energy-Guided Sampling (SEGS), a training-free, plug-and-play framework that enforces multi-view consistency entirely at sampling time. SEGS defines a structural energy in a PCA subspace of intermediate U-Net features and injects its gradients into the denoising trajectory, steering geometry toward the intended viewpoint while preserving appearance fidelity. Integrated seamlessly into SDS/VSD pipelines, SEGS significantly reduces Janus artifacts, achieving improved geometric alignment and viewpoint consistency without retraining or weight modification.
Abstract:Evaluation plays a crucial role in the development of ranking algorithms on search and recommender systems. It enables online platforms to create user-friendly features that drive commercial success in a steady and effective manner. The online environment is particularly conducive to applying causal inference techniques, such as randomized controlled experiments (known as A/B test), which are often more challenging to implement in fields like medicine and public policy. However, businesses face unique challenges when it comes to effective A/B test. Specifically, achieving sufficient statistical power for conversion-based metrics can be time-consuming, especially for significant purchases like booking accommodations. While offline evaluations are quicker and more cost-effective, they often lack accuracy and are inadequate for selecting candidates for A/B test. To address these challenges, we developed interleaving and counterfactual evaluation methods to facilitate rapid online assessments for identifying the most promising candidates for A/B tests. Our approach not only increased the sensitivity of experiments by a factor of up to 100 (depending on the approach and metrics) compared to traditional A/B testing but also streamlined the experimental process. The practical insights gained from usage in production can also benefit organizations with similar interests.




Abstract:Medical Hyperspectral Imaging (MHSI) has emerged as a promising tool for enhanced disease diagnosis, particularly in computational pathology, offering rich spectral information that aids in identifying subtle biochemical properties of tissues. Despite these advantages, effectively fusing both spatial-dimensional and spectral-dimensional information from MHSIs remains challenging due to its high dimensionality and spectral redundancy inherent characteristics. To solve the above challenges, we propose a novel spatial-spectral omni-fusion network for hyperspectral image segmentation, named as Omni-Fuse. Here, we introduce abundant cross-dimensional feature fusion operations, including a cross-dimensional enhancement module that refines both spatial and spectral features through bidirectional attention mechanisms, a spectral-guided spatial query selection to select the most spectral-related spatial feature as the query, and a two-stage cross-dimensional decoder which dynamically guide the model to focus on the selected spatial query. Despite of numerous attention blocks, Omni-Fuse remains efficient in execution. Experiments on two microscopic hyperspectral image datasets show that our approach can significantly improve the segmentation performance compared with the state-of-the-art methods, with over 5.73 percent improvement in DSC. Code available at: https://github.com/DeepMed-Lab-ECNU/Omni-Fuse.
Abstract:Camouflaged object detection (COD) primarily focuses on learning subtle yet discriminative representations from complex scenes. Existing methods predominantly follow the parametric feedforward architecture based on static visual representation modeling. However, they lack explicit mechanisms for acquiring historical context, limiting their adaptation and effectiveness in handling challenging camouflage scenes. In this paper, we propose a recall-augmented COD architecture, namely RetroMem, which dynamically modulates camouflage pattern perception and inference by integrating relevant historical knowledge into the process. Specifically, RetroMem employs a two-stage training paradigm consisting of a learning stage and a recall stage to construct, update, and utilize memory representations effectively. During the learning stage, we design a dense multi-scale adapter (DMA) to improve the pretrained encoder's capability to capture rich multi-scale visual information with very few trainable parameters, thereby providing foundational inferences. In the recall stage, we propose a dynamic memory mechanism (DMM) and an inference pattern reconstruction (IPR). These components fully leverage the latent relationships between learned knowledge and current sample context to reconstruct the inference of camouflage patterns, thereby significantly improving the model's understanding of camouflage scenes. Extensive experiments on several widely used datasets demonstrate that our RetroMem significantly outperforms existing state-of-the-art methods.
Abstract:Flying robots, such as quadrotor drones, offer new possibilities for human-robot interaction but often pose safety risks due to fast-spinning propellers, rigid structures, and noise. In contrast, lighter-than-air flapping-wing robots, inspired by animal movement, offer a soft, quiet, and touch-safe alternative. Building on these advantages, we present \textit{Cuddle-Fish}, a soft, flapping-wing floating robot designed for safe, close-proximity interactions in indoor spaces. Through a user study with 24 participants, we explored their perceptions of the robot and experiences during a series of co-located demonstrations in which the robot moved near them. Results showed that participants felt safe, willingly engaged in touch-based interactions with the robot, and exhibited spontaneous affective behaviours, such as patting, stroking, hugging, and cheek-touching, without external prompting. They also reported positive emotional responses towards the robot. These findings suggest that the soft floating robot with flapping wings can serve as a novel and socially acceptable alternative to traditional rigid flying robots, opening new possibilities for companionship, play, and interactive experiences in everyday indoor environments.




Abstract:Chart Question Answering (CQA) benchmarks are essential for evaluating the capability of Multimodal Large Language Models (MLLMs) to interpret visual data. However, current benchmarks focus primarily on the evaluation of general-purpose CQA but fail to adequately capture domain-specific challenges. We introduce DomainCQA, a systematic methodology for constructing domain-specific CQA benchmarks, and demonstrate its effectiveness by developing AstroChart, a CQA benchmark in the field of astronomy. Our evaluation shows that chart reasoning and combining chart information with domain knowledge for deeper analysis and summarization, rather than domain-specific knowledge, pose the primary challenge for existing MLLMs, highlighting a critical gap in current benchmarks. By providing a scalable and rigorous framework, DomainCQA enables more precise assessment and improvement of MLLMs for domain-specific applications.