Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

Picture for Lihong Li

On the Optimality of Batch Policy Optimization Algorithms


Apr 06, 2021
Chenjun Xiao, Yifan Wu, Tor Lattimore, Bo Dai, Jincheng Mei, Lihong Li, Csaba Szepesvari, Dale Schuurmans

* 29 pages, 8 figures 

  Access Paper or Ask Questions

Near-optimal Representation Learning for Linear Bandits and Linear RL


Feb 08, 2021
Jiachen Hu, Xiaoyu Chen, Chi Jin, Lihong Li, Liwei Wang


  Access Paper or Ask Questions

CoinDICE: Off-Policy Confidence Interval Estimation


Oct 22, 2020
Bo Dai, Ofir Nachum, Yinlam Chow, Lihong Li, Csaba Szepesvári, Dale Schuurmans

* To appear at NeurIPS 2020 as spotlight 

  Access Paper or Ask Questions

Neural Thompson Sampling


Oct 02, 2020
Weitong Zhang, Dongruo Zhou, Lihong Li, Quanquan Gu

* 32 pages, 2 tables, 4 figures 

  Access Paper or Ask Questions

Efficient Reinforcement Learning in Factored MDPs with Application to Constrained RL


Sep 15, 2020
Xiaoyu Chen, Jiachen Hu, Lihong Li, Liwei Wang


  Access Paper or Ask Questions

Off-policy Evaluation in Infinite-Horizon Reinforcement Learning with Latent Confounders


Jul 27, 2020
Andrew Bennett, Nathan Kallus, Lihong Li, Ali Mousavi


  Access Paper or Ask Questions

Off-Policy Evaluation via the Regularized Lagrangian


Jul 07, 2020
Mengjiao Yang, Ofir Nachum, Bo Dai, Lihong Li, Dale Schuurmans


  Access Paper or Ask Questions

Black-box Off-policy Estimation for Infinite-Horizon Reinforcement Learning


Mar 24, 2020
Ali Mousavi, Lihong Li, Qiang Liu, Denny Zhou

* Published at ICLR 2020 

  Access Paper or Ask Questions

Batch Stationary Distribution Estimation


Mar 02, 2020
Junfeng Wen, Bo Dai, Lihong Li, Dale Schuurmans


  Access Paper or Ask Questions

GenDICE: Generalized Offline Estimation of Stationary Values


Feb 21, 2020
Ruiyi Zhang, Bo Dai, Lihong Li, Dale Schuurmans

* ICLR 2020 

  Access Paper or Ask Questions

Data Efficient Training for Reinforcement Learning with Adaptive Behavior Policy Sharing


Feb 12, 2020
Ge Liu, Rui Wu, Heng-Tze Cheng, Jing Wang, Jayden Ooi, Lihong Li, Ang Li, Wai Lok Sibon Li, Craig Boutilier, Ed Chi

* on Deep Reinforcement Learning workshop at NeurIPS 2019 

  Access Paper or Ask Questions

AlgaeDICE: Policy Gradient from Arbitrary Experience


Dec 04, 2019
Ofir Nachum, Bo Dai, Ilya Kostrikov, Yinlam Chow, Lihong Li, Dale Schuurmans


  Access Paper or Ask Questions

Neural Contextual Bandits with Upper Confidence Bound-Based Exploration


Nov 11, 2019
Dongruo Zhou, Lihong Li, Quanquan Gu

* 37 pages, 1 figure 

  Access Paper or Ask Questions

Doubly Robust Bias Reduction in Infinite Horizon Off-Policy Estimation


Oct 16, 2019
Ziyang Tang, Yihao Feng, Lihong Li, Dengyong Zhou, Qiang Liu


  Access Paper or Ask Questions

Randomized Exploration in Generalized Linear Bandits


Jun 21, 2019
Branislav Kveton, Manzil Zaheer, Csaba Szepesvari, Lihong Li, Mohammad Ghavamzadeh, Craig Boutilier


  Access Paper or Ask Questions

DualDICE: Behavior-Agnostic Estimation of Discounted Stationary Distribution Corrections


Jun 10, 2019
Ofir Nachum, Yinlam Chow, Bo Dai, Lihong Li


  Access Paper or Ask Questions

A Kernel Loss for Solving the Bellman Equation


May 25, 2019
Yihao Feng, Lihong Li, Qiang Liu


  Access Paper or Ask Questions

Neural Logic Machines


Apr 26, 2019
Honghua Dong, Jiayuan Mao, Tian Lin, Chong Wang, Lihong Li, Denny Zhou

* ICLR 2019. Project page: https://sites.google.com/view/neural-logic-machines 

  Access Paper or Ask Questions

Policy Certificates: Towards Accountable Reinforcement Learning


Nov 07, 2018
Christoph Dann, Lihong Li, Wei Wei, Emma Brunskill


  Access Paper or Ask Questions

Breaking the Curse of Horizon: Infinite-Horizon Off-Policy Estimation


Oct 29, 2018
Qiang Liu, Lihong Li, Ziyang Tang, Dengyong Zhou

* 21 pages, 5 figures, NIPS 2018 (spotlight) 

  Access Paper or Ask Questions

Adversarial Attacks on Stochastic Bandits


Oct 29, 2018
Kwang-Sung Jun, Lihong Li, Yuzhe Ma, Xiaojin Zhu

* accepted to NIPS 

  Access Paper or Ask Questions

Subgoal Discovery for Hierarchical Dialogue Policy Learning


Sep 22, 2018
Da Tang, Xiujun Li, Jianfeng Gao, Chong Wang, Lihong Li, Tony Jebara

* 11 pages, 6 figures, EMNLP 2018 

  Access Paper or Ask Questions

Neural Approaches to Conversational AI


Sep 21, 2018
Jianfeng Gao, Michel Galley, Lihong Li

* Submitted to Foundations and Trends in Information Retrieval (85 pages) 

  Access Paper or Ask Questions

Data Poisoning Attacks in Contextual Bandits


Aug 24, 2018
Yuzhe Ma, Kwang-Sung Jun, Lihong Li, Xiaojin Zhu

* GameSec 2018 

  Access Paper or Ask Questions

SBEED: Convergent Reinforcement Learning with Nonlinear Function Approximation


Jun 05, 2018
Bo Dai, Albert Shaw, Lihong Li, Lin Xiao, Niao He, Zhen Liu, Jianshu Chen, Le Song

* 28 pages, 13 figures. To appear at the 35th International Conference on Machine Learning (ICML 2018) 

  Access Paper or Ask Questions

Scalable Bilinear $π$ Learning Using State and Action Features


Apr 27, 2018
Yichen Chen, Lihong Li, Mengdi Wang


  Access Paper or Ask Questions

Combating Reinforcement Learning's Sisyphean Curse with Intrinsic Fear


Mar 13, 2018
Zachary C. Lipton, Kamyar Azizzadenesheli, Abhishek Kumar, Lihong Li, Jianfeng Gao, Li Deng


  Access Paper or Ask Questions

End-to-End Task-Completion Neural Dialogue Systems


Feb 11, 2018
Xiujun Li, Yun-Nung Chen, Lihong Li, Jianfeng Gao, Asli Celikyilmaz

* 11 pages, IJCNLP 2017, arXiv admin note: substantial text overlap with arXiv:1703.07055 

  Access Paper or Ask Questions

Boosting the Actor with Dual Critic


Dec 29, 2017
Bo Dai, Albert Shaw, Niao He, Lihong Li, Le Song

* 21 pages, 9 figures 

  Access Paper or Ask Questions