Abstract:Training Large Language Models (LLMs) on long contexts is severely constrained by prohibitive GPU memory overhead, not training time. The primary culprits are the activations, whose memory footprints scale linearly with sequence length. We introduce OOMB, a highly memory-efficient training system that directly confronts this barrier. Our approach employs a chunk-recurrent training framework with on-the-fly activation recomputation, which maintains a constant activation memory footprint (O(1)) and shifts the primary bottleneck to the growing KV cache. To manage the KV cache, OOMB integrates a suite of synergistic optimizations: a paged memory manager for both the KV cache and its gradients to eliminate fragmentation, asynchronous CPU offloading to hide data transfer latency, and page-level sparse attention to reduce both computational complexity and communication overhead. The synergy of these techniques yields exceptional efficiency. Our empirical results show that for every additional 10K tokens of context, the end-to-end training memory overhead increases by a mere 10MB for Qwen2.5-7B. This allows training Qwen2.5-7B with a 4M-token context on a single H200 GPU, a feat that would otherwise require a large cluster using context parallelism. This work represents a substantial advance in resource efficiency for long-context LLM training. The source code is available at https://github.com/wenhaoli-xmu/OOMB.
Abstract:Villalobos et al. [2024] predict that publicly available human text will be exhausted within the next decade. Thus, improving models without access to ground-truth labels becomes increasingly important. We propose a label-free post-processing framework that improves a strong but miscalibrated model using a weaker yet better-calibrated reference. Our framework guarantees a strict performance improvement under any proper loss. Our approach is based on a characterization of when strict improvement is possible: when the strong and reference models are not mutually calibrated. We formalize this condition, connect it to arbitrage and no-trade results from economics, and develop an efficient Bregman projection algorithm that guarantees worst-case loss reduction without labels. Experiments on representative LLMs across varying scales demonstrate that our label-free method significantly reduces proper losses and calibration errors, achieving performance competitive with supervised baselines.
Abstract:This document consolidates publicly reported technical details about Metas Llama 4 model family. It summarizes (i) released variants (Scout and Maverick) and the broader herd context including the previewed Behemoth teacher model, (ii) architectural characteristics beyond a high-level MoE description covering routed/shared-expert structure, early-fusion multimodality, and long-context design elements reported for Scout (iRoPE and length generalization strategies), (iii) training disclosures spanning pre-training, mid-training for long-context extension, and post-training methodology (lightweight SFT, online RL, and lightweight DPO) as described in release materials, (iv) developer-reported benchmark results for both base and instruction-tuned checkpoints, and (v) practical deployment constraints observed across major serving environments, including provider-specific context limits and quantization packaging. The manuscript also summarizes licensing obligations relevant to redistribution and derivative naming, and reviews publicly described safeguards and evaluation practices. The goal is to provide a compact technical reference for researchers and practitioners who need precise, source-backed facts about Llama 4.
Abstract:Memory overload is a common form of resource exhaustion in cloud data warehouses. When database queries fail due to memory overload, it not only wastes critical resources such as CPU time but also disrupts the execution of core business processes, as memory-overloading (MO) queries are typically part of complex workflows. If such queries are identified in advance and scheduled to memory-rich serverless clusters, it can prevent resource wastage and query execution failure. Therefore, cloud data warehouses desire an admission control framework with high prediction precision, interpretability, efficiency, and adaptability to effectively identify MO queries. However, existing admission control frameworks primarily focus on scenarios like SLA satisfaction and resource isolation, with limited precision in identifying MO queries. Moreover, there is a lack of publicly available MO-labeled datasets with workloads for training and benchmarking. To tackle these challenges, we propose SafeLoad, the first query admission control framework specifically designed to identify MO queries. Alongside, we release SafeBench, an open-source, industrial-scale benchmark for this task, which includes 150 million real queries. SafeLoad first filters out memory-safe queries using the interpretable discriminative rule. It then applies a hybrid architecture that integrates both a global model and cluster-level models, supplemented by a misprediction correction module to identify MO queries. Additionally, a self-tuning quota management mechanism dynamically adjusts prediction quotas per cluster to improve precision. Experimental results show that SafeLoad achieves state-of-the-art prediction performance with low online and offline time overhead. Specifically, SafeLoad improves precision by up to 66% over the best baseline and reduces wasted CPU time by up to 8.09x compared to scenarios without SafeLoad.
Abstract:This is the system card published alongside the OpenAI GPT-5 launch, August 2025. GPT-5 is a unified system with a smart and fast model that answers most questions, a deeper reasoning model for harder problems, and a real-time router that quickly decides which model to use based on conversation type, complexity, tool needs, and explicit intent (for example, if you say 'think hard about this' in the prompt). The router is continuously trained on real signals, including when users switch models, preference rates for responses, and measured correctness, improving over time. Once usage limits are reached, a mini version of each model handles remaining queries. This system card focuses primarily on gpt-5-thinking and gpt-5-main, while evaluations for other models are available in the appendix. The GPT-5 system not only outperforms previous models on benchmarks and answers questions more quickly, but -- more importantly -- is more useful for real-world queries. We've made significant advances in reducing hallucinations, improving instruction following, and minimizing sycophancy, and have leveled up GPT-5's performance in three of ChatGPT's most common uses: writing, coding, and health. All of the GPT-5 models additionally feature safe-completions, our latest approach to safety training to prevent disallowed content. Similarly to ChatGPT agent, we have decided to treat gpt-5-thinking as High capability in the Biological and Chemical domain under our Preparedness Framework, activating the associated safeguards. While we do not have definitive evidence that this model could meaningfully help a novice to create severe biological harm -- our defined threshold for High capability -- we have chosen to take a precautionary approach.
Abstract:Biological foundation models (BioFMs), pretrained on large-scale biological sequences, have recently shown strong potential in providing meaningful representations for diverse downstream bioinformatics tasks. However, such models often rely on millions to billions of training sequences and billions of parameters, resulting in prohibitive computational costs and significant barriers to reproducibility and accessibility, particularly for academic labs. To address these challenges, we investigate the feasibility of data pruning for BioFM pretraining and propose a post-hoc influence-guided data pruning framework tailored to biological domains. Our approach introduces a subset-based self-influence formulation that enables efficient estimation of sample importance at low computational cost, and builds upon it two simple yet effective selection strategies, namely Top-k Influence (Top I) and Coverage-Centric Influence (CCI). We empirically validate our method on two representative BioFMs, RNA-FM and ESM-C. For RNA, our framework consistently outperforms random selection baselines under an extreme pruning rate of over 99 percent, demonstrating its effectiveness. Furthermore, we show the generalizability of our framework on protein-related tasks using ESM-C. In particular, our coreset even outperforms random subsets that are ten times larger in both RNA and protein settings, revealing substantial redundancy in biological sequence datasets. These findings underscore the potential of influence-guided data pruning to substantially reduce the computational cost of BioFM pretraining, paving the way for more efficient, accessible, and sustainable biological AI research.
Abstract:Self-improvement is a critical capability for large language models and other intelligent systems, enabling them to refine their behavior and internal consistency without external supervision. Despite its importance, prior approaches largely rely on empirical heuristics and lack formal guarantees. In this paper, we propose a principled framework for self-improvement based on the concept of \emph{coherence}, which requires that a model's outputs remain consistent under task-preserving transformations of the input. We formalize this concept using projection-based mechanisms that update a baseline model to be coherent while remaining as close as possible to its original behavior. We provide rigorous theoretical guarantees that these mechanisms achieve \emph{monotonic improvement}, measured by a reduction in expected Bregman divergence. Our analysis is comprehensive, covering both \emph{direct} and \emph{two-step} projection methods, and robustly extends these guarantees to non-realizable settings, empirical (finite-sample) distributions, and relaxed coherence constraints. Furthermore, we establish a general \emph{characterization theorem}, showing that any mechanism with similar provable improvement guarantees must inherently conform to a coherence-based structure. This culminates in rigidity results under the demand for universal improvement, establishing coherence as a fundamental and, in a formal sense, necessary principle for provable self-improvement.




Abstract:While reinforcement learning (RL) can empower autonomous agents by enabling self-improvement through interaction, its practical adoption remains challenging due to costly rollouts, limited task diversity, unreliable reward signals, and infrastructure complexity, all of which obstruct the collection of scalable experience data. To address these challenges, we introduce DreamGym, the first unified framework designed to synthesize diverse experiences with scalability in mind to enable effective online RL training for autonomous agents. Rather than relying on expensive real-environment rollouts, DreamGym distills environment dynamics into a reasoning-based experience model that derives consistent state transitions and feedback signals through step-by-step reasoning, enabling scalable agent rollout collection for RL. To improve the stability and quality of transitions, DreamGym leverages an experience replay buffer initialized with offline real-world data and continuously enriched with fresh interactions to actively support agent training. To improve knowledge acquisition, DreamGym adaptively generates new tasks that challenge the current agent policy, enabling more effective online curriculum learning. Experiments across diverse environments and agent backbones demonstrate that DreamGym substantially improves RL training, both in fully synthetic settings and in sim-to-real transfer scenarios. On non-RL-ready tasks like WebArena, DreamGym outperforms all baselines by over 30%. And in RL-ready but costly settings, it matches GRPO and PPO performance using only synthetic interactions. When transferring a policy trained purely on synthetic experiences to real-environment RL, DreamGym yields significant additional performance gains while requiring far fewer real-world interactions, providing a scalable warm-start strategy for general-purpose RL.
Abstract:Visualization, a domain-specific yet widely used form of imagery, is an effective way to turn complex datasets into intuitive insights, and its value depends on whether data are faithfully represented, clearly communicated, and aesthetically designed. However, evaluating visualization quality is challenging: unlike natural images, it requires simultaneous judgment across data encoding accuracy, information expressiveness, and visual aesthetics. Although multimodal large language models (MLLMs) have shown promising performance in aesthetic assessment of natural images, no systematic benchmark exists for measuring their capabilities in evaluating visualizations. To address this, we propose VisJudge-Bench, the first comprehensive benchmark for evaluating MLLMs' performance in assessing visualization aesthetics and quality. It contains 3,090 expert-annotated samples from real-world scenarios, covering single visualizations, multiple visualizations, and dashboards across 32 chart types. Systematic testing on this benchmark reveals that even the most advanced MLLMs (such as GPT-5) still exhibit significant gaps compared to human experts in judgment, with a Mean Absolute Error (MAE) of 0.551 and a correlation with human ratings of only 0.429. To address this issue, we propose VisJudge, a model specifically designed for visualization aesthetics and quality assessment. Experimental results demonstrate that VisJudge significantly narrows the gap with human judgment, reducing the MAE to 0.442 (a 19.8% reduction) and increasing the consistency with human experts to 0.681 (a 58.7% improvement) compared to GPT-5. The benchmark is available at https://github.com/HKUSTDial/VisJudgeBench.
Abstract:Heterogeneous marine-aerial swarm networks encounter substantial difficulties due to targeted communication disruptions and structural weaknesses in adversarial environments. This paper proposes a two-step framework to strengthen the network's resilience. Specifically, our framework combines the node prioritization based on criticality with multi-objective topology optimization. First, we design a three-layer architecture to represent structural, communication, and task dependencies of the swarm networks. Then, we introduce the SurBi-Ranking method, which utilizes graph convolutional networks, to dynamically evaluate and rank the criticality of nodes and edges in real time. Next, we apply the NSGA-III algorithm to optimize the network topology, aiming to balance communication efficiency, global connectivity, and mission success rate. Experiments demonstrate that compared to traditional methods like K-Shell, our SurBi-Ranking method identifies critical nodes and edges with greater accuracy, as deliberate attacks on these components cause more significant connectivity degradation. Furthermore, our optimization approach, when prioritizing SurBi-Ranked critical components under attack, reduces the natural connectivity degradation by around 30%, achieves higher mission success rates, and incurs lower communication reconfiguration costs, ensuring sustained connectivity and mission effectiveness across multi-phase operations.