Get our free extension to see links to code for papers anywhere online!

 Add to Chrome

 Add to Firefox

CatalyzeX Code Finder - Browser extension linking code for ML papers across the web! | Product Hunt Embed
FiGLearn: Filter and Graph Learning using Optimal Transport

Oct 29, 2020
Matthias Minder, Zahra Farsijani, Dhruti Shah, Mireille El Gheche, Pascal Frossard


  Access Paper or Ask Questions

Multilayer Clustered Graph Learning

Oct 29, 2020
Mireille El Gheche, Pascal Frossard


  Access Paper or Ask Questions

Optimism in the Face of Adversity: Understanding and Improving Deep Learning through Adversarial Robustness

Oct 19, 2020
Guillermo Ortiz-Jimenez, Apostolos Modas, Seyed-Mohsen Moosavi-Dezfooli, Pascal Frossard

* Preprint (Under review) - Accepting feedback. 23 pages, 14 figures 

  Access Paper or Ask Questions

FAR: A General Framework for Attributional Robustness

Oct 14, 2020
Adam Ivankay, Ivan Girardi, Chiara Marchiori, Pascal Frossard


  Access Paper or Ask Questions

Modurec: Recommender Systems with Feature and Time Modulation

Oct 13, 2020
Javier Maroto, Clément Vignac, Pascal Frossard


  Access Paper or Ask Questions

Graph signal processing for machine learning: A review and new perspectives

Jul 31, 2020
Xiaowen Dong, Dorina Thanou, Laura Toni, Michael Bronstein, Pascal Frossard


  Access Paper or Ask Questions

node2coords: Graph Representation Learning with Wasserstein Barycenters

Jul 31, 2020
Effrosyni Simou, Dorina Thanou, Pascal Frossard


  Access Paper or Ask Questions

Towards robust sensing for Autonomous Vehicles: An adversarial perspective

Jul 14, 2020
Apostolos Modas, Ricardo Sanchez-Matilla, Pascal Frossard, Andrea Cavallaro

* IEEE Signal Processing Magazine, Volume 37, Issue 4, Pages 14 - 23, July 2020 

  Access Paper or Ask Questions

Building powerful and equivariant graph neural networks with structural message-passing

Jul 11, 2020
Clement Vignac, Andreas Loukas, Pascal Frossard

* Submitted to Neurips 2020. 18 pages, 5 figures 

  Access Paper or Ask Questions

Building powerful and equivariant graph neural networks with message-passing

Jun 26, 2020
Clement Vignac, Andreas Loukas, Pascal Frossard

* Submitted to Neurips 2020. 18 pages, 5 figures 

  Access Paper or Ask Questions

Graph Pooling with Node Proximity for Hierarchical Representation Learning

Jun 19, 2020
Xing Gao, Wenrui Dai, Chenglin Li, Hongkai Xiong, Pascal Frossard


  Access Paper or Ask Questions

Neural Anisotropy Directions

Jun 17, 2020
Guillermo Ortiz-Jimenez, Apostolos Modas, Seyed-Mohsen Moosavi-Dezfooli, Pascal Frossard

* 39 pages, 22 figures 

  Access Paper or Ask Questions

GeoDA: a geometric framework for black-box adversarial attacks

Mar 13, 2020
Ali Rahmati, Seyed-Mohsen Moosavi-Dezfooli, Pascal Frossard, Huaiyu Dai

* In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2020 

  Access Paper or Ask Questions

Wasserstein-based Graph Alignment

Mar 12, 2020
Hermina Petric Maretic, Mireille El Gheche, Matthias Minder, Giovanni Chierchia, Pascal Frossard


  Access Paper or Ask Questions

Hold me tight! Influence of discriminative features on deep network boundaries

Feb 15, 2020
Guillermo Ortiz-Jimenez, Apostolos Modas, Seyed-Mohsen Moosavi-Dezfooli, Pascal Frossard


  Access Paper or Ask Questions

Imperceptible Adversarial Attacks on Tabular Data

Dec 13, 2019
Vincent Ballet, Xavier Renard, Jonathan Aigrain, Thibault Laugel, Pascal Frossard, Marcin Detyniecki

* presented at NeurIPS 2019 Workshop on Robust AI in Financial Services: Data, Fairness, Explainability, Trustworthiness, and Privacy (Robust AI in FS 2019), Vancouver, Canada 

  Access Paper or Ask Questions

Joint Graph-based Depth Refinement and Normal Estimation

Dec 03, 2019
Mattia Rossi, Mireille El Gheche, Andreas Kuhn, Pascal Frossard


  Access Paper or Ask Questions

Multi-view shape estimation of transparent containers

Nov 27, 2019
Alessio Xompero, Ricardo Sanchez-Matilla, Apostolos Modas, Pascal Frossard, Andrea Cavallaro

* Submitted to International Conference on Acoustic, Speech, and Signal Processing (ICASSP); 5 pages, 7 figures 

  Access Paper or Ask Questions

On the choice of graph neural network architectures

Nov 13, 2019
Clément Vignac, Guillermo Ortiz-Jiménez, Pascal Frossard

* 5 pages, 1 figure, submitted to ICASSP 2020 

  Access Paper or Ask Questions

Mask Combination of Multi-layer Graphs for Global Structure Inference

Oct 22, 2019
Eda Bayram, Dorina Thanou, Elif Vural, Pascal Frossard


  Access Paper or Ask Questions

CDOT: Continuous Domain Adaptation using Optimal Transport

Oct 03, 2019
Guillermo Ortiz-Jimenez, Mireille El Gheche, Effrosyni Simou, Hermina Petric Maretic, Pascal Frossard


  Access Paper or Ask Questions

iPool -- Information-based Pooling in Hierarchical Graph Neural Networks

Jul 01, 2019
Xing Gao, Hongkai Xiong, Pascal Frossard


  Access Paper or Ask Questions

GOT: An Optimal Transport framework for Graph comparison

Jun 05, 2019
Hermina Petric Maretic, Mireille EL Gheche, Giovanni Chierchia, Pascal Frossard


  Access Paper or Ask Questions

A geometry-inspired decision-based attack

Mar 26, 2019
Yujia Liu, Seyed-Mohsen Moosavi-Dezfooli, Pascal Frossard


  Access Paper or Ask Questions

Graph heat mixture model learning

Jan 24, 2019
Hermina Petric Maretic, Mireille El Gheche, Pascal Frossard


  Access Paper or Ask Questions

Stochastic Gradient Descent for Spectral Embedding with Implicit Orthogonality Constraint

Dec 13, 2018
Mireille El Gheche, Giovanni Chierchia, Pascal Frossard

* Submitted to ICASSP 2019 

  Access Paper or Ask Questions

Robustness via curvature regularization, and vice versa

Nov 23, 2018
Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Jonathan Uesato, Pascal Frossard


  Access Paper or Ask Questions

SparseFool: a few pixels make a big difference

Nov 18, 2018
Apostolos Modas, Seyed-Mohsen Moosavi-Dezfooli, Pascal Frossard


  Access Paper or Ask Questions