Abstract:Semi-supervised learning has become a compelling approach for 3D tooth segmentation from CBCT scans, where labeled data is minimal. However, existing methods still face two persistent challenges: limited corrective supervision in structurally ambiguous or mislabeled regions during supervised training and performance degradation caused by unreliable pseudo-labels on unlabeled data. To address these problems, we propose Region-Aware Instructive Learning (RAIL), a dual-group dual-student, semi-supervised framework. Each group contains two student models guided by a shared teacher network. By alternating training between the two groups, RAIL promotes intergroup knowledge transfer and collaborative region-aware instruction while reducing overfitting to the characteristics of any single model. Specifically, RAIL introduces two instructive mechanisms. Disagreement-Focused Supervision (DFS) Controller improves supervised learning by instructing predictions only within areas where student outputs diverge from both ground truth and the best student, thereby concentrating supervision on structurally ambiguous or mislabeled areas. In the unsupervised phase, Confidence-Aware Learning (CAL) Modulator reinforces agreement in regions with high model certainty while reducing the effect of low-confidence predictions during training. This helps prevent our model from learning unstable patterns and improves the overall reliability of pseudo-labels. Extensive experiments on four CBCT tooth segmentation datasets show that RAIL surpasses state-of-the-art methods under limited annotation. Our code will be available at https://github.com/Tournesol-Saturday/RAIL.
Abstract:Document parsing is essential for analyzing complex document structures and extracting fine-grained information, supporting numerous downstream applications. However, existing methods often require integrating multiple independent models to handle various parsing tasks, leading to high complexity and maintenance overhead. To address this, we propose DocFusion, a lightweight generative model with only 0.28B parameters. It unifies task representations and achieves collaborative training through an improved objective function. Experiments reveal and leverage the mutually beneficial interaction among recognition tasks, and integrating recognition data significantly enhances detection performance. The final results demonstrate that DocFusion achieves state-of-the-art (SOTA) performance across four key tasks.
Abstract:Empirical researchers and decision-makers spanning various domains frequently seek profound insights into the long-term impacts of interventions. While the significance of long-term outcomes is undeniable, an overemphasis on them may inadvertently overshadow short-term gains. Motivated by this, this paper formalizes a new framework for learning the optimal policy that effectively balances both long-term and short-term rewards, where some long-term outcomes are allowed to be missing. In particular, we first present the identifiability of both rewards under mild assumptions. Next, we deduce the semiparametric efficiency bounds, along with the consistency and asymptotic normality of their estimators. We also reveal that short-term outcomes, if associated, contribute to improving the estimator of the long-term reward. Based on the proposed estimators, we develop a principled policy learning approach and further derive the convergence rates of regret and estimation errors associated with the learned policy. Extensive experiments are conducted to validate the effectiveness of the proposed method, demonstrating its practical applicability.