



Abstract:Hallucinations in large language models (LLMs) are commonly regarded as errors to be minimized. However, recent perspectives suggest that some hallucinations may encode creative or epistemically valuable content, a dimension that remains underquantified in current literature. Existing hallucination detection methods primarily focus on factual consistency, struggling to handle heterogeneous scientific tasks and balance creativity with accuracy. To address these challenges, we propose HIC-Bench, a novel evaluation framework that categorizes hallucinations into Intelligent Hallucinations (IH) and Defective Hallucinations (DH), enabling systematic investigation of their interplay in LLM creativity. HIC-Bench features three core characteristics: (1) Structured IH/DH Assessment. using a multi-dimensional metric matrix integrating Torrance Tests of Creative Thinking (TTCT) metrics (Originality, Feasibility, Value) with hallucination-specific dimensions (scientific plausibility, factual deviation); (2) Cross-Domain Applicability. spanning ten scientific domains with open-ended innovation tasks; and (3) Dynamic Prompt Optimization. leveraging the Dynamic Hallucination Prompt (DHP) to guide models toward creative and reliable outputs. The evaluation process employs multiple LLM judges, averaging scores to mitigate bias, with human annotators verifying IH/DH classifications. Experimental results reveal a nonlinear relationship between IH and DH, demonstrating that creativity and correctness can be jointly optimized. These insights position IH as a catalyst for creativity and reveal the ability of LLM hallucinations to drive scientific innovation.Additionally, the HIC-Bench offers a valuable platform for advancing research into the creative intelligence of LLM hallucinations.




Abstract:Data-protection regulations such as the GDPR grant every participant in a federated system a right to be forgotten. Federated unlearning has therefore emerged as a research frontier, aiming to remove a specific party's contribution from the learned model while preserving the utility of the remaining parties. However, most unlearning techniques focus on Horizontal Federated Learning (HFL), where data are partitioned by samples. In contrast, Vertical Federated Learning (VFL) allows organizations that possess complementary feature spaces to train a joint model without sharing raw data. The resulting feature-partitioned architecture renders HFL-oriented unlearning methods ineffective. In this paper, we propose REMISVFU, a plug-and-play representation misdirection framework that enables fast, client-level unlearning in splitVFL systems. When a deletion request arrives, the forgetting party collapses its encoder output to a randomly sampled anchor on the unit sphere, severing the statistical link between its features and the global model. To maintain utility for the remaining parties, the server jointly optimizes a retention loss and a forgetting loss, aligning their gradients via orthogonal projection to eliminate destructive interference. Evaluations on public benchmarks show that REMISVFU suppresses back-door attack success to the natural class-prior level and sacrifices only about 2.5% points of clean accuracy, outperforming state-of-the-art baselines.




Abstract:Operation recommendation for IoT devices refers to generating personalized device operations for users based on their context, such as historical operations, environment information, and device status. This task is crucial for enhancing user satisfaction and corporate profits. Existing recommendation models struggle with complex operation logic, diverse user preferences, and sensitive to suboptimal suggestions, limiting their applicability to IoT device operations. To address these issues, we propose DevPiolt, a LLM-based recommendation model for IoT device operations. Specifically, we first equip the LLM with fundamental domain knowledge of IoT operations via continual pre-training and multi-task fine-tuning. Then, we employ direct preference optimization to align the fine-tuned LLM with specific user preferences. Finally, we design a confidence-based exposure control mechanism to avoid negative user experiences from low-quality recommendations. Extensive experiments show that DevPiolt significantly outperforms baselines on all datasets, with an average improvement of 69.5% across all metrics. DevPiolt has been practically deployed in Xiaomi Home app for one quarter, providing daily operation recommendations to 255,000 users. Online experiment results indicate a 21.6% increase in unique visitor device coverage and a 29.1% increase in page view acceptance rates.
Abstract:LLMs often suffer from hallucinations and outdated or incomplete knowledge. RAG is proposed to address these issues by integrating external knowledge like that in KGs into LLMs. However, leveraging private KGs in RAG systems poses significant privacy risks due to the black-box nature of LLMs and potential insecure data transmission, especially when using third-party LLM APIs lacking transparency and control. In this paper, we investigate the privacy-protected RAG scenario for the first time, where entities in KGs are anonymous for LLMs, thus preventing them from accessing entity semantics. Due to the loss of semantics of entities, previous RAG systems cannot retrieve question-relevant knowledge from KGs by matching questions with the meaningless identifiers of anonymous entities. To realize an effective RAG system in this scenario, two key challenges must be addressed: (1) How can anonymous entities be converted into retrievable information. (2) How to retrieve question-relevant anonymous entities. Hence, we propose a novel ARoG framework including relation-centric abstraction and structure-oriented abstraction strategies. For challenge (1), the first strategy abstracts entities into high-level concepts by dynamically capturing the semantics of their adjacent relations. It supplements meaningful semantics which can further support the retrieval process. For challenge (2), the second strategy transforms unstructured natural language questions into structured abstract concept paths. These paths can be more effectively aligned with the abstracted concepts in KGs, thereby improving retrieval performance. To guide LLMs to effectively retrieve knowledge from KGs, the two strategies strictly protect privacy from being exposed to LLMs. Experiments on three datasets demonstrate that ARoG achieves strong performance and privacy-robustness.
Abstract:Smart contract is a kind of self-executing code based on blockchain technology with a wide range of application scenarios, but the traditional generation method relies on manual coding and expert auditing, which has a high threshold and low efficiency. Although Large Language Models (LLMs) show great potential in programming tasks, they still face challenges in smart contract generation w.r.t. effectiveness and security. To solve these problems, we propose FSM-SCG, a smart contract generation framework based on finite state machine (FSM) and LLMs, which significantly improves the quality of the generated code by abstracting user requirements to generate FSM, guiding LLMs to generate smart contracts, and iteratively optimizing the code with the feedback of compilation and security checks. The experimental results show that FSM-SCG significantly improves the quality of smart contract generation. Compared to the best baseline, FSM-SCG improves the compilation success rate of generated smart contract code by at most 48%, and reduces the average vulnerability risk score by approximately 68%.




Abstract:Text-attributed graph (TAG) provides a text description for each graph node, and few- and zero-shot node classification on TAGs have many applications in fields such as academia and social networks. Existing work utilizes various graph-based augmentation techniques to train the node and text embeddings, while text-based augmentations are largely unexplored. In this paper, we propose Text Semantics Augmentation (TSA) to improve accuracy by introducing more text semantic supervision signals. Specifically, we design two augmentation techniques, i.e., positive semantics matching and negative semantics contrast, to provide more reference texts for each graph node or text description. Positive semantic matching retrieves texts with similar embeddings to match with a graph node. Negative semantic contrast adds a negative prompt to construct a text description with the opposite semantics, which is contrasted with the original node and text. We evaluate TSA on 5 datasets and compare with 13 state-of-the-art baselines. The results show that TSA consistently outperforms all baselines, and its accuracy improvements over the best-performing baseline are usually over 5%.
Abstract:The growing context lengths of large language models (LLMs) pose significant challenges for efficient inference, primarily due to GPU memory and bandwidth constraints. We present RetroInfer, a novel system that reconceptualizes the key-value (KV) cache as a vector storage system which exploits the inherent attention sparsity to accelerate long-context LLM inference. At its core is the wave index, an Attention-aWare VEctor index that enables efficient and accurate retrieval of critical tokens through techniques such as tripartite attention approximation, accuracy-bounded attention estimation, and segmented clustering. Complementing this is the wave buffer, which coordinates KV cache placement and overlaps computation and data transfer across GPU and CPU to sustain high throughput. Unlike prior sparsity-based methods that struggle with token selection and hardware coordination, RetroInfer delivers robust performance without compromising model accuracy. Experiments on long-context benchmarks show up to 4.5X speedup over full attention within GPU memory limits and up to 10.5X over sparse attention baselines when KV cache is extended to CPU memory, all while preserving full-attention-level accuracy.
Abstract:Incorporating additional sensory modalities such as tactile and audio into foundational robotic models poses significant challenges due to the curse of dimensionality. This work addresses this issue through modality selection. We propose a cross-modality attention (CMA) mechanism to identify and selectively utilize the modalities that are most informative for action generation at each timestep. Furthermore, we extend the application of CMA to segment primitive skills from expert demonstrations and leverage this segmentation to train a hierarchical policy capable of solving long-horizon, contact-rich manipulation tasks.




Abstract:In recent years, Graph Neural Networks (GNNs) have achieved remarkable success in many graph mining tasks. However, scaling them to large graphs is challenging due to the high computational and storage costs of repeated feature propagation and non-linear transformation during training. One commonly employed approach to address this challenge is model-simplification, which only executes the Propagation (P) once in the pre-processing, and Combine (C) these receptive fields in different ways and then feed them into a simple model for better performance. Despite their high predictive performance and scalability, these methods still face two limitations. First, existing approaches mainly focus on exploring different C methods from the model perspective, neglecting the crucial problem of performance degradation with increasing P depth from the data-centric perspective, known as the over-smoothing problem. Second, pre-processing overhead takes up most of the end-to-end processing time, especially for large-scale graphs. To address these limitations, we present random walk with noise masking (RMask), a plug-and-play module compatible with the existing model-simplification works. This module enables the exploration of deeper GNNs while preserving their scalability. Unlike the previous model-simplification works, we focus on continuous P and found that the noise existing inside each P is the cause of the over-smoothing issue, and use the efficient masking mechanism to eliminate them. Experimental results on six real-world datasets demonstrate that model-simplification works equipped with RMask yield superior performance compared to their original version and can make a good trade-off between accuracy and efficiency.




Abstract:In recent years, origin-destination (OD) demand prediction has gained significant attention for its profound implications in urban development. Existing data-driven deep learning methods primarily focus on the spatial or temporal dependency between regions yet neglecting regions' fundamental functional difference. Though knowledge-driven physical methods have characterised regions' functions by their radiation and attraction capacities, these functions are defined on numerical factors like population without considering regions' intrinsic nominal attributes, e.g., a region is a residential or industrial district. Moreover, the complicated relationships between two types of capacities, e.g., the radiation capacity of a residential district in the morning will be transformed into the attraction capacity in the evening, are totally missing from physical methods. In this paper, we not only generalize the physical radiation and attraction capacities into the deep learning framework with the extended capability to fulfil regions' functions, but also present a new model that captures the relationships between two types of capacities. Specifically, we first model regions' radiation and attraction capacities using a bilateral branch network, each equipped with regions' attribute representations. We then describe the transformation relationship of different capacities of the same region using a hypergraph-based parameter generation method. We finally unveil the competition relationship of different regions with the same attraction capacity through cluster-based adversarial learning. Extensive experiments on two datasets demonstrate the consistent improvements of our method over the state-of-the-art baselines, as well as the good explainability of regions' functions using their nominal attributes.