Abstract:Recent text-to-3D generation methods achieve impressive 3D content creation capacity thanks to the advances in image diffusion models and optimizing strategies. However, current methods struggle to generate correct 3D content for a complex prompt in semantics, i.e., a prompt describing multiple interacted objects binding with different attributes. In this work, we propose a general framework named Progressive3D, which decomposes the entire generation into a series of locally progressive editing steps to create precise 3D content for complex prompts, and we constrain the content change to only occur in regions determined by user-defined region prompts in each editing step. Furthermore, we propose an overlapped semantic component suppression technique to encourage the optimization process to focus more on the semantic differences between prompts. Extensive experiments demonstrate that the proposed Progressive3D framework generates precise 3D content for prompts with complex semantics and is general for various text-to-3D methods driven by different 3D representations.
Abstract:In this paper, we present TOSS, which introduces text to the task of novel view synthesis (NVS) from just a single RGB image. While Zero-1-to-3 has demonstrated impressive zero-shot open-set NVS capability, it treats NVS as a pure image-to-image translation problem. This approach suffers from the challengingly under-constrained nature of single-view NVS: the process lacks means of explicit user control and often results in implausible NVS generations. To address this limitation, TOSS uses text as high-level semantic information to constrain the NVS solution space. TOSS fine-tunes text-to-image Stable Diffusion pre-trained on large-scale text-image pairs and introduces modules specifically tailored to image and camera pose conditioning, as well as dedicated training for pose correctness and preservation of fine details. Comprehensive experiments are conducted with results showing that our proposed TOSS outperforms Zero-1-to-3 with more plausible, controllable and multiview-consistent NVS results. We further support these results with comprehensive ablations that underscore the effectiveness and potential of the introduced semantic guidance and architecture design.
Abstract:Large image diffusion models enable novel view synthesis with high quality and excellent zero-shot capability. However, such models based on image-to-image translation have no guarantee of view consistency, limiting the performance for downstream tasks like 3D reconstruction and image-to-3D generation. To empower consistency, we propose Consistent123 to synthesize novel views simultaneously by incorporating additional cross-view attention layers and the shared self-attention mechanism. The proposed attention mechanism improves the interaction across all synthesized views, as well as the alignment between the condition view and novel views. In the sampling stage, such architecture supports simultaneously generating an arbitrary number of views while training at a fixed length. We also introduce a progressive classifier-free guidance strategy to achieve the trade-off between texture and geometry for synthesized object views. Qualitative and quantitative experiments show that Consistent123 outperforms baselines in view consistency by a large margin. Furthermore, we demonstrate a significant improvement of Consistent123 on varying downstream tasks, showing its great potential in the 3D generation field. The project page is available at consistent-123.github.io.
Abstract:In this paper, we present Delta-LoRA, which is a novel parameter-efficient approach to fine-tune large language models (LLMs). In contrast to LoRA and other low-rank adaptation methods such as AdaLoRA, Delta-LoRA not only updates the low-rank matrices $\bA$ and $\bB$, but also propagate the learning to the pre-trained weights $\bW$ via updates utilizing the delta of the product of two low-rank matrices ($\bA^{(t+1)}\bB^{(t+1)} - \bA^{(t)}\bB^{(t)}$). Such a strategy effectively addresses the limitation that the incremental update of low-rank matrices is inadequate for learning representations capable for downstream tasks. Moreover, as the update of $\bW$ does not need to compute the gradients of $\bW$ and store their momentums, Delta-LoRA shares comparable memory requirements and computational costs with LoRA. Extensive experiments show that Delta-LoRA significantly outperforms existing low-rank adaptation methods. We further support these results with comprehensive analyses that underscore the effectiveness of Delta-LoRA.
Abstract:Text-to-image diffusion models pre-trained on billions of image-text pairs have recently enabled text-to-3D content creation by optimizing a randomly initialized Neural Radiance Fields (NeRF) with score distillation. However, the resultant 3D models exhibit two limitations: (a) quality concerns such as saturated color and the Janus problem; (b) extremely low diversity comparing to text-guided image synthesis. In this paper, we show that the conflict between NeRF optimization process and uniform timestep sampling in score distillation is the main reason for these limitations. To resolve this conflict, we propose to prioritize timestep sampling with monotonically non-increasing functions, which aligns NeRF optimization with the sampling process of diffusion model. Extensive experiments show that our simple redesign significantly improves text-to-3D content creation with higher quality and diversity.
Abstract:This article provides a comprehensive understanding of optimization in deep learning, with a primary focus on the challenges of gradient vanishing and gradient exploding, which normally lead to diminished model representational ability and training instability, respectively. We analyze these two challenges through several strategic measures, including the improvement of gradient flow and the imposition of constraints on a network's Lipschitz constant. To help understand the current optimization methodologies, we categorize them into two classes: explicit optimization and implicit optimization. Explicit optimization methods involve direct manipulation of optimizer parameters, including weight, gradient, learning rate, and weight decay. Implicit optimization methods, by contrast, focus on improving the overall landscape of a network by enhancing its modules, such as residual shortcuts, normalization methods, attention mechanisms, and activations. In this article, we provide an in-depth analysis of these two optimization classes and undertake a thorough examination of the Jacobian matrices and the Lipschitz constants of many widely used deep learning modules, highlighting existing issues as well as potential improvements. Moreover, we also conduct a series of analytical experiments to substantiate our theoretical discussions. This article does not aim to propose a new optimizer or network. Rather, our intention is to present a comprehensive understanding of optimization in deep learning. We hope that this article will assist readers in gaining a deeper insight in this field and encourages the development of more robust, efficient, and high-performing models.
Abstract:The DEtection TRansformer (DETR) algorithm has received considerable attention in the research community and is gradually emerging as a mainstream approach for object detection and other perception tasks. However, the current field lacks a unified and comprehensive benchmark specifically tailored for DETR-based models. To address this issue, we develop a unified, highly modular, and lightweight codebase called detrex, which supports a majority of the mainstream DETR-based instance recognition algorithms, covering various fundamental tasks, including object detection, segmentation, and pose estimation. We conduct extensive experiments under detrex and perform a comprehensive benchmark for DETR-based models. Moreover, we enhance the performance of detection transformers through the refinement of training hyper-parameters, providing strong baselines for supported algorithms.We hope that detrex could offer research communities a standardized and unified platform to evaluate and compare different DETR-based models while fostering a deeper understanding and driving advancements in DETR-based instance recognition. Our code is available at https://github.com/IDEA-Research/detrex. The project is currently being actively developed. We encourage the community to use detrex codebase for further development and contributions.
Abstract:We present DreamWaltz, a novel framework for generating and animating complex avatars given text guidance and parametric human body prior. While recent methods have shown encouraging results in the text-to-3D generation of common objects, creating high-quality and animatable 3D avatars remains challenging. To create high-quality 3D avatars, DreamWaltz proposes 3D-consistent occlusion-aware Score Distillation Sampling (SDS) to optimize implicit neural representations with canonical poses. It provides view-aligned supervision via 3D-aware skeleton conditioning and enables complex avatar generation without artifacts and multiple faces. For animation, our method learns an animatable and generalizable avatar representation which could map arbitrary poses to the canonical pose representation. Extensive evaluations demonstrate that DreamWaltz is an effective and robust approach for creating 3D avatars that can take on complex shapes and appearances as well as novel poses for animation. The proposed framework further enables the creation of complex scenes with diverse compositions, including avatar-avatar, avatar-object and avatar-scene interactions.
Abstract:We present a Lipschitz continuous Transformer, called LipsFormer, to pursue training stability both theoretically and empirically for Transformer-based models. In contrast to previous practical tricks that address training instability by learning rate warmup, layer normalization, attention formulation, and weight initialization, we show that Lipschitz continuity is a more essential property to ensure training stability. In LipsFormer, we replace unstable Transformer component modules with Lipschitz continuous counterparts: CenterNorm instead of LayerNorm, spectral initialization instead of Xavier initialization, scaled cosine similarity attention instead of dot-product attention, and weighted residual shortcut. We prove that these introduced modules are Lipschitz continuous and derive an upper bound on the Lipschitz constant of LipsFormer. Our experiments show that LipsFormer allows stable training of deep Transformer architectures without the need of careful learning rate tuning such as warmup, yielding a faster convergence and better generalization. As a result, on the ImageNet 1K dataset, LipsFormer-Swin-Tiny based on Swin Transformer training for 300 epochs can obtain 82.7\% without any learning rate warmup. Moreover, LipsFormer-CSwin-Tiny, based on CSwin, training for 300 epochs achieves a top-1 accuracy of 83.5\% with 4.7G FLOPs and 24M parameters. The code will be released at \url{https://github.com/IDEA-Research/LipsFormer}.
Abstract:We propose DisCo-CLIP, a distributed memory-efficient CLIP training approach, to reduce the memory consumption of contrastive loss when training contrastive learning models. Our approach decomposes the contrastive loss and its gradient computation into two parts, one to calculate the intra-GPU gradients and the other to compute the inter-GPU gradients. According to our decomposition, only the intra-GPU gradients are computed on the current GPU, while the inter-GPU gradients are collected via all_reduce from other GPUs instead of being repeatedly computed on every GPU. In this way, we can reduce the GPU memory consumption of contrastive loss computation from $\bigO(B^2)$ to $\bigO(\frac{B^2}{N})$, where $B$ and $N$ are the batch size and the number of GPUs used for training. Such a distributed solution is mathematically equivalent to the original non-distributed contrastive loss computation, without sacrificing any computation accuracy. It is particularly efficient for large-batch CLIP training. For instance, DisCo-CLIP can enable contrastive training of a ViT-B/32 model with a batch size of 32K or 196K using 8 or 64 A100 40GB GPUs, compared with the original CLIP solution which requires 128 A100 40GB GPUs to train a ViT-B/32 model with a batch size of 32K. The code will be released at https://github.com/IDEA-Research/DisCo-CLIP