Alert button
Picture for Qiang Ju

Qiang Ju

Alert button

Dialogue State Distillation Network with Inter-Slot Contrastive Learning for Dialogue State Tracking

Feb 16, 2023
Jing Xu, Dandan Song, Chong Liu, Siu Cheung Hui, Fei Li, Qiang Ju, Xiaonan He, Jian Xie

Figure 1 for Dialogue State Distillation Network with Inter-Slot Contrastive Learning for Dialogue State Tracking
Figure 2 for Dialogue State Distillation Network with Inter-Slot Contrastive Learning for Dialogue State Tracking
Figure 3 for Dialogue State Distillation Network with Inter-Slot Contrastive Learning for Dialogue State Tracking
Figure 4 for Dialogue State Distillation Network with Inter-Slot Contrastive Learning for Dialogue State Tracking

In task-oriented dialogue systems, Dialogue State Tracking (DST) aims to extract users' intentions from the dialogue history. Currently, most existing approaches suffer from error propagation and are unable to dynamically select relevant information when utilizing previous dialogue states. Moreover, the relations between the updates of different slots provide vital clues for DST. However, the existing approaches rely only on predefined graphs to indirectly capture the relations. In this paper, we propose a Dialogue State Distillation Network (DSDN) to utilize relevant information of previous dialogue states and migrate the gap of utilization between training and testing. Thus, it can dynamically exploit previous dialogue states and avoid introducing error propagation simultaneously. Further, we propose an inter-slot contrastive learning loss to effectively capture the slot co-update relations from dialogue context. Experiments are conducted on the widely used MultiWOZ 2.0 and MultiWOZ 2.1 datasets. The experimental results show that our proposed model achieves the state-of-the-art performance for DST.

* Accepted by AAAI 2023 
Viaarxiv icon

TOD-DA: Towards Boosting the Robustness of Task-oriented Dialogue Modeling on Spoken Conversations

Dec 23, 2021
Xin Tian, Xinxian Huang, Dongfeng He, Yingzhan Lin, Siqi Bao, Huang He, Liankai Huang, Qiang Ju, Xiyuan Zhang, Jian Xie, Shuqi Sun, Fan Wang, Hua Wu, Haifeng Wang

Figure 1 for TOD-DA: Towards Boosting the Robustness of Task-oriented Dialogue Modeling on Spoken Conversations
Figure 2 for TOD-DA: Towards Boosting the Robustness of Task-oriented Dialogue Modeling on Spoken Conversations
Figure 3 for TOD-DA: Towards Boosting the Robustness of Task-oriented Dialogue Modeling on Spoken Conversations
Figure 4 for TOD-DA: Towards Boosting the Robustness of Task-oriented Dialogue Modeling on Spoken Conversations

Task-oriented dialogue systems have been plagued by the difficulties of obtaining large-scale and high-quality annotated conversations. Furthermore, most of the publicly available datasets only include written conversations, which are insufficient to reflect actual human behaviors in practical spoken dialogue systems. In this paper, we propose Task-oriented Dialogue Data Augmentation (TOD-DA), a novel model-agnostic data augmentation paradigm to boost the robustness of task-oriented dialogue modeling on spoken conversations. The TOD-DA consists of two modules: 1) Dialogue Enrichment to expand training data on task-oriented conversations for easing data sparsity and 2) Spoken Conversation Simulator to imitate oral style expressions and speech recognition errors in diverse granularities for bridging the gap between written and spoken conversations. With such designs, our approach ranked first in both tasks of DSTC10 Track2, a benchmark for task-oriented dialogue modeling on spoken conversations, demonstrating the superiority and effectiveness of our proposed TOD-DA.

* Accepted to the AAAI-22 DSTC10 Workshop. First three authors contributed equally to this work 
Viaarxiv icon