Abstract:We propose GAM-Agent, a game-theoretic multi-agent framework for enhancing vision-language reasoning. Unlike prior single-agent or monolithic models, GAM-Agent formulates the reasoning process as a non-zero-sum game between base agents--each specializing in visual perception subtasks--and a critical agent that verifies logic consistency and factual correctness. Agents communicate via structured claims, evidence, and uncertainty estimates. The framework introduces an uncertainty-aware controller to dynamically adjust agent collaboration, triggering multi-round debates when disagreement or ambiguity is detected. This process yields more robust and interpretable predictions. Experiments on four challenging benchmarks--MMMU, MMBench, MVBench, and V*Bench--demonstrate that GAM-Agent significantly improves performance across various VLM backbones. Notably, GAM-Agent boosts the accuracy of small-to-mid scale models (e.g., Qwen2.5-VL-7B, InternVL3-14B) by 5--6\%, and still enhances strong models like GPT-4o by up to 2--3\%. Our approach is modular, scalable, and generalizable, offering a path toward reliable and explainable multi-agent multimodal reasoning.
Abstract:Reasoning about temporal causality, particularly irreversible transformations of objects governed by real-world knowledge (e.g., fruit decay and human aging), is a fundamental aspect of human visual understanding. Unlike temporal perception based on simple event sequences, this form of reasoning requires a deeper comprehension of how object states change over time. Although the current powerful Vision-Language Models (VLMs) have demonstrated impressive performance on a wide range of downstream tasks, their capacity to reason about temporal causality remains underexplored. To address this gap, we introduce \textbf{TimeCausality}, a novel benchmark specifically designed to evaluate the causal reasoning ability of VLMs in the temporal dimension. Based on our TimeCausality, we find that while the current SOTA open-source VLMs have achieved performance levels comparable to closed-source models like GPT-4o on various standard visual question answering tasks, they fall significantly behind on our benchmark compared with their closed-source competitors. Furthermore, even GPT-4o exhibits a marked drop in performance on TimeCausality compared to its results on other tasks. These findings underscore the critical need to incorporate temporal causality into the evaluation and development of VLMs, and they highlight an important challenge for the open-source VLM community moving forward. Code and Data are available at \href{https://github.com/Zeqing-Wang/TimeCausality }{TimeCausality}.
Abstract:The paramount challenge in audio-driven One-shot Talking Head Animation (ADOS-THA) lies in capturing subtle imperceptible changes between adjacent video frames. Inherently, the temporal relationship of adjacent audio clips is highly correlated with that of the corresponding adjacent video frames, offering supplementary information that can be pivotal for guiding and supervising talking head animations. In this work, we propose to learn audio-visual correlations and integrate the correlations to help enhance feature representation and regularize final generation by a novel Temporal Audio-Visual Correlation Embedding (TAVCE) framework. Specifically, it first learns an audio-visual temporal correlation metric, ensuring the temporal audio relationships of adjacent clips are aligned with the temporal visual relationships of corresponding adjacent video frames. Since the temporal audio relationship contains aligned information about the visual frame, we first integrate it to guide learning more representative features via a simple yet effective channel attention mechanism. During training, we also use the alignment correlations as an additional objective to supervise generating visual frames. We conduct extensive experiments on several publicly available benchmarks (i.e., HDTF, LRW, VoxCeleb1, and VoxCeleb2) to demonstrate its superiority over existing leading algorithms.
Abstract:Alpha mining, a critical component in quantitative investment, focuses on discovering predictive signals for future asset returns in increasingly complex financial markets. However, the pervasive issue of alpha decay, where factors lose their predictive power over time, poses a significant challenge for alpha mining. Traditional methods like genetic programming face rapid alpha decay from overfitting and complexity, while approaches driven by Large Language Models (LLMs), despite their promise, often rely too heavily on existing knowledge, creating homogeneous factors that worsen crowding and accelerate decay. To address this challenge, we propose AlphaAgent, an autonomous framework that effectively integrates LLM agents with ad hoc regularizations for mining decay-resistant alpha factors. AlphaAgent employs three key mechanisms: (i) originality enforcement through a similarity measure based on abstract syntax trees (ASTs) against existing alphas, (ii) hypothesis-factor alignment via LLM-evaluated semantic consistency between market hypotheses and generated factors, and (iii) complexity control via AST-based structural constraints, preventing over-engineered constructions that are prone to overfitting. These mechanisms collectively guide the alpha generation process to balance originality, financial rationale, and adaptability to evolving market conditions, mitigating the risk of alpha decay. Extensive evaluations show that AlphaAgent outperforms traditional and LLM-based methods in mitigating alpha decay across bull and bear markets, consistently delivering significant alpha in Chinese CSI 500 and US S&P 500 markets over the past four years. Notably, AlphaAgent showcases remarkable resistance to alpha decay, elevating the potential for yielding powerful factors.
Abstract:As scaling large language models faces prohibitive costs, multi-agent systems emerge as a promising alternative, though challenged by static knowledge assumptions and coordination inefficiencies. We introduces Knowledge-Aware Bayesian Bandits (KABB), a novel framework that enhances multi-agent system coordination through semantic understanding and dynamic adaptation. The framework features three key innovations: a three-dimensional knowledge distance model for deep semantic understanding, a dual-adaptation mechanism for continuous expert optimization, and a knowledge-aware Thompson Sampling strategy for efficient expert selection. Extensive evaluation demonstrates KABB achieves an optimal cost-performance balance, maintaining high performance while keeping computational demands relatively low in multi-agent coordination.
Abstract:Although Kolmogorov-Arnold based interpretable networks (KAN) have strong theoretical expressiveness, they face significant parameter explosion and high-frequency feature capture challenges in high-dimensional tasks. To address this issue, we propose the Kolmogorov-Arnold-Fourier Network (KAF), which effectively integrates trainable Random Fourier Features (RFF) and a novel hybrid GELU-Fourier activation mechanism to balance parameter efficiency and spectral representation capabilities. Our key technical contributions include: (1) merging KAN's dual-matrix structure through matrix association properties to substantially reduce parameters; (2) introducing learnable RFF initialization strategies to eliminate spectral distortion in high-dimensional approximation tasks; (3) implementing an adaptive hybrid activation function that progressively enhances frequency representation during the training process. Comprehensive experiments demonstrate the superiority of our KAF across various domains including vision, NLP, audio processing, and differential equation-solving tasks, effectively combining theoretical interpretability with practical utility and computational efficiency.
Abstract:Deductive reasoning is a crucial logical capability that assists us in solving complex problems based on existing knowledge. Although augmented by Chain-of-Thought prompts, Large Language Models (LLMs) might not follow the correct reasoning paths. Enhancing the deductive reasoning abilities of LLMs, and leveraging their extensive built-in knowledge for various reasoning tasks, remains an open question. Attempting to mimic the human deductive reasoning paradigm, we propose a multi-stage Syllogistic-Reasoning Framework of Thought (SR-FoT) that enables LLMs to perform syllogistic deductive reasoning to handle complex knowledge-based reasoning tasks. Our SR-FoT begins by interpreting the question and then uses the interpretation and the original question to propose a suitable major premise. It proceeds by generating and answering minor premise questions in two stages to match the minor premises. Finally, it guides LLMs to use the previously generated major and minor premises to perform syllogistic deductive reasoning to derive the answer to the original question. Extensive and thorough experiments on knowledge-based reasoning tasks have demonstrated the effectiveness and advantages of our SR-FoT.
Abstract:Benefiting from the generalization capability of CLIP, recent vision language pre-training (VLP) models have demonstrated an impressive ability to capture virtually any visual concept in daily images. However, due to the presence of unseen categories in open-vocabulary settings, existing algorithms struggle to effectively capture strong semantic correlations between categories, resulting in sub-optimal performance on the open-vocabulary multi-label recognition (OV-MLR). Furthermore, the substantial variation in the number of discriminative areas across diverse object categories is misaligned with the fixed-number patch matching used in current methods, introducing noisy visual cues that hinder the accurate capture of target semantics. To tackle these challenges, we propose a novel category-adaptive cross-modal semantic refinement and transfer (C$^2$SRT) framework to explore the semantic correlation both within each category and across different categories, in a category-adaptive manner. The proposed framework consists of two complementary modules, i.e., intra-category semantic refinement (ISR) module and inter-category semantic transfer (IST) module. Specifically, the ISR module leverages the cross-modal knowledge of the VLP model to adaptively find a set of local discriminative regions that best represent the semantics of the target category. The IST module adaptively discovers a set of most correlated categories for a target category by utilizing the commonsense capabilities of LLMs to construct a category-adaptive correlation graph and transfers semantic knowledge from the correlated seen categories to unseen ones. Extensive experiments on OV-MLR benchmarks clearly demonstrate that the proposed C$^2$SRT framework outperforms current state-of-the-art algorithms.
Abstract:Recent improvements in visual synthesis have significantly enhanced the depiction of generated human photos, which are pivotal due to their wide applicability and demand. Nonetheless, the existing text-to-image or text-to-video models often generate low-quality human photos that might differ considerably from real-world body structures, referred to as "abnormal human bodies". Such abnormalities, typically deemed unacceptable, pose considerable challenges in the detection and repair of them within human photos. These challenges require precise abnormality recognition capabilities, which entail pinpointing both the location and the abnormality type. Intuitively, Visual Language Models (VLMs) that have obtained remarkable performance on various visual tasks are quite suitable for this task. However, their performance on abnormality detection in human photos is quite poor. Hence, it is quite important to highlight this task for the research community. In this paper, we first introduce a simple yet challenging task, i.e., \textbf{F}ine-grained \textbf{H}uman-body \textbf{A}bnormality \textbf{D}etection \textbf{(FHAD)}, and construct two high-quality datasets for evaluation. Then, we propose a meticulous framework, named HumanCalibrator, which identifies and repairs abnormalities in human body structures while preserving the other content. Experiments indicate that our HumanCalibrator achieves high accuracy in abnormality detection and accomplishes an increase in visual comparisons while preserving the other visual content.
Abstract:While deep neural networks have achieved remarkable performance, they tend to lack transparency in prediction. The pursuit of greater interpretability in neural networks often results in a degradation of their original performance. Some works strive to improve both interpretability and performance, but they primarily depend on meticulously imposed conditions. In this paper, we propose a simple yet effective framework that acquires more explainable activation heatmaps and simultaneously increase the model performance, without the need for any extra supervision. Specifically, our concise framework introduces a new metric, i.e., explanation consistency, to reweight the training samples adaptively in model learning. The explanation consistency metric is utilized to measure the similarity between the model's visual explanations of the original samples and those of semantic-preserved adversarial samples, whose background regions are perturbed by using image adversarial attack techniques. Our framework then promotes the model learning by paying closer attention to those training samples with a high difference in explanations (i.e., low explanation consistency), for which the current model cannot provide robust interpretations. Comprehensive experimental results on various benchmarks demonstrate the superiority of our framework in multiple aspects, including higher recognition accuracy, greater data debiasing capability, stronger network robustness, and more precise localization ability on both regular networks and interpretable networks. We also provide extensive ablation studies and qualitative analyses to unveil the detailed contribution of each component.