Abstract:Retrieval-Augmented Generation (RAG) faces a core bottleneck with knowledge-sparse and semantically ambiguous long-tail queries, where retrieval noise distorts reasoning and necessitates costly post-processing. To tackle this, we propose RaCoT (Retrieval-aware Contrastive-of-Thought), a novel framework that shifts contrastive thinking to the pre-retrieval stage. By automatically generating a semantically adjacent yet differently answered contrastive question and extracting a $\Delta$-Prompt to capture their key differences, RaCoT guides the model to proactively focus on the ``critical details that determine answer divergence." This approach allows it to suppress semantic interference within a single retrieval pass, overcoming the theoretical bottleneck of single-vector queries that struggle to simultaneously encode signals for what to attend to and what to ignore. On six authoritative benchmarks, including PopQA and TriviaQA-unfiltered, RaCoT outperforms strong baselines like RankRAG and Self-RAG by 0.9-2.4 percentage points. It exhibits superior robustness, with a performance drop of only 8.6\% in adversarial tests, far surpassing the over 15\% degradation in other methods. Furthermore, its low latency (3.12s) and token overhead (11.54) place it on the accuracy-efficiency Pareto frontier, while ablation studies validate the necessity of each component. Ultimately, RaCoT reframes the RAG paradigm from ``post-hoc context cleaning" to ``a priori shaping of discriminative reasoning", offering an efficient and robust path toward reliable AI systems for real-time, resource-constrained deployments.
Abstract:Hybrid offline--online reinforcement learning (O2O RL) promises both sample efficiency and robust exploration, but suffers from instability due to distribution shift between offline and online data. We introduce RLPD-GX, a framework that decouples policy optimization from safety enforcement: a reward-seeking learner explores freely, while a projection-based guardian guarantees rule-consistent execution and safe value backups. This design preserves the exploratory value of online interactions without collapsing to conservative policies. To further stabilize training, we propose dynamic curricula that gradually extend temporal horizons and anneal offline--online data mixing. We prove convergence via a contraction property of the guarded Bellman operator, and empirically show state-of-the-art performance on Atari-100k, achieving a normalized mean score of 3.02 (+45\% over prior hybrid methods) with stronger safety and stability. Beyond Atari, ablations demonstrate consistent gains across safety-critical and long-horizon tasks, underscoring the generality of our design. Extensive and comprehensive results highlight decoupled safety enforcement as a simple yet principled route to robust O2O RL, suggesting a broader paradigm for reconciling exploration and safety in reinforcement learning.
Abstract:Full fine-tuning of Large Language Models (LLMs) is notoriously memory-intensive, primarily because conventional optimizers such as SGD or Adam assume access to exact gradients derived from cached activations. Existing solutions either alter the model architecture (e.g., reversible networks) or trade memory for computation (e.g., activation checkpointing), but the optimizer itself remains untouched. In this work, we introduce GradLite, a backward-friendly optimizer that relaxes the requirement of exact gradients, enabling efficient training even when intermediate activations are aggressively discarded or approximated. GradLite leverages two key techniques: (i) low-rank Jacobian approximation, which reduces the dimensionality of backpropagated error signals, and (ii) error-feedback correction, which accumulates and compensates approximation errors across iterations to preserve convergence guarantees. We provide a theoretical analysis showing that GradLite maintains unbiased gradient estimates with bounded variance, ensuring convergence rates comparable to Adam. Empirically, GradLite reduces optimizer-state and activation memory consumption by up to 50\% without architectural changes, and achieves on-par or superior downstream performance on reasoning (MMLU, GSM8K), multilingual, and dialogue benchmarks compared to checkpointing and optimizer-centric baselines (LoMo, GaLore).
Abstract:Large Vision-Language Models (VLMs) face an inherent contradiction in image captioning: their powerful single-step generation capabilities often lead to a myopic decision-making process. This makes it difficult to maintain global narrative coherence while capturing rich details, a limitation that is particularly pronounced in tasks that require multi-step and complex scene description. To overcome this fundamental challenge, we redefine image captioning as a goal-oriented hierarchical refinement planning problem, and further propose a novel framework, named Top-Down Semantic Refinement (TDSR), which models the generation process as a Markov Decision Process (MDP). However, planning within the vast state space of a VLM presents a significant computational hurdle. Our core contribution, therefore, is the design of a highly efficient Monte Carlo Tree Search (MCTS) algorithm tailored for VLMs. By incorporating a visual-guided parallel expansion and a lightweight value network, our TDSR reduces the call frequency to the expensive VLM by an order of magnitude without sacrificing planning quality. Furthermore, an adaptive early stopping mechanism dynamically matches computational overhead to the image's complexity. Extensive experiments on multiple benchmarks, including DetailCaps, COMPOSITIONCAP, and POPE, demonstrate that our TDSR, as a plug-and-play module, can significantly enhance the performance of existing VLMs (e.g., LLaVA-1.5, Qwen2.5-VL) by achieving state-of-the-art or highly competitive results in fine-grained description, compositional generalization, and hallucination suppression.
Abstract:This paper introduces OSC (Orchestrating Cognitive Synergy), a knowledge-aware adaptive collaboration framework designed to enhance cognitive synergy in multi-agent systems with large language models. While prior work has advanced agent selection and result aggregation, efficient linguistic interactions for deep collaboration among expert agents remain a critical bottleneck. OSC addresses this gap as a pivotal intermediate layer between selection and aggregation, introducing Collaborator Knowledge Models (CKM) to enable each agent to dynamically perceive its collaborators' cognitive states. Through real-time cognitive gap analysis, agents adaptively adjust communication behaviors, including content focus, detail level, and expression style, using learned strategies. Experiments on complex reasoning and problem-solving benchmarks demonstrate that OSC significantly improves task performance and communication efficiency, transforming "parallel-working individuals'' into a "deeply collaborative cognitive team.'' This framework not only optimizes multi-agent collaboration but also offers new insights into LLM agent interaction behaviors.




Abstract:Although Kolmogorov-Arnold based interpretable networks (KAN) have strong theoretical expressiveness, they face significant parameter explosion and high-frequency feature capture challenges in high-dimensional tasks. To address this issue, we propose the Kolmogorov-Arnold-Fourier Network (KAF), which effectively integrates trainable Random Fourier Features (RFF) and a novel hybrid GELU-Fourier activation mechanism to balance parameter efficiency and spectral representation capabilities. Our key technical contributions include: (1) merging KAN's dual-matrix structure through matrix association properties to substantially reduce parameters; (2) introducing learnable RFF initialization strategies to eliminate spectral distortion in high-dimensional approximation tasks; (3) implementing an adaptive hybrid activation function that progressively enhances frequency representation during the training process. Comprehensive experiments demonstrate the superiority of our KAF across various domains including vision, NLP, audio processing, and differential equation-solving tasks, effectively combining theoretical interpretability with practical utility and computational efficiency.