Abstract:Retrieval-augmented generation has achieved strong performance on knowledge-intensive tasks where query-document relevance can be identified through direct lexical or semantic matches. However, many real-world queries involve abstract reasoning, analogical thinking, or multi-step inference, which existing retrievers often struggle to capture. To address this challenge, we present \textbf{DIVER}, a retrieval pipeline tailored for reasoning-intensive information retrieval. DIVER consists of four components: document processing to improve input quality, LLM-driven query expansion via iterative document interaction, a reasoning-enhanced retriever fine-tuned on synthetic multi-domain data with hard negatives, and a pointwise reranker that combines LLM-assigned helpfulness scores with retrieval scores. On the BRIGHT benchmark, DIVER achieves state-of-the-art nDCG@10 scores of 41.6 and 28.9 on original queries, consistently outperforming competitive reasoning-aware models. These results demonstrate the effectiveness of reasoning-aware retrieval strategies in complex real-world tasks. Our code and retrieval model will be released soon.
Abstract:Few-shot Font Generation (FFG) aims to create new font libraries using limited reference glyphs, with crucial applications in digital accessibility and equity for low-resource languages, especially in multilingual artificial intelligence systems. Although existing methods have shown promising performance, transitioning to unseen characters in low-resource languages remains a significant challenge, especially when font glyphs vary considerably across training sets. MX-Font considers the content of a character from the perspective of a local component, employing a Mixture of Experts (MoE) approach to adaptively extract the component for better transition. However, the lack of a robust feature extractor prevents them from adequately decoupling content and style, leading to sub-optimal generation results. To alleviate these problems, we propose Heterogeneous Aggregation Experts (HAE), a powerful feature extraction expert that helps decouple content and style downstream from being able to aggregate information in channel and spatial dimensions. Additionally, we propose a novel content-style homogeneity loss to enhance the untangling. Extensive experiments on several datasets demonstrate that our MX-Font++ yields superior visual results in FFG and effectively outperforms state-of-the-art methods. Code and data are available at https://github.com/stephensun11/MXFontpp.