Abstract:Audio-visual embodied navigation, as a hot research topic, aims training a robot to reach an audio target using egocentric visual (from the sensors mounted on the robot) and audio (emitted from the target) input. The audio-visual information fusion strategy is naturally important to the navigation performance, but the state-of-the-art methods still simply concatenate the visual and audio features, potentially ignoring the direct impact of context. Moreover, the existing approaches requires either phase-wise training or additional aid (e.g. topology graph and sound semantics). Up till this date, the work that deals with the more challenging setup with moving target(s) is still rare. As a result, we propose an end-to-end framework FSAAVN (feature self-attention audio-visual navigation) to learn chasing after a moving audio target using a context-aware audio-visual fusion strategy implemented as a self-attention module. Our thorough experiments validate the superior performance (both quantitatively and qualitatively) of FSAAVN in comparison with the state-of-the-arts, and also provide unique insights about the choice of visual modalities, visual/audio encoder backbones and fusion patterns.
Abstract:3D object detection is a crucial research topic in computer vision, which usually uses 3D point clouds as input in conventional setups. Recently, there is a trend of leveraging multiple sources of input data, such as complementing the 3D point cloud with 2D images that often have richer color and fewer noises. However, due to the heterogeneous geometrics of the 2D and 3D representations, it prevents us from applying off-the-shelf neural networks to achieve multimodal fusion. To that end, we propose Bridged Transformer (BrT), an end-to-end architecture for 3D object detection. BrT is simple and effective, which learns to identify 3D and 2D object bounding boxes from both points and image patches. A key element of BrT lies in the utilization of object queries for bridging 3D and 2D spaces, which unifies different sources of data representations in Transformer. We adopt a form of feature aggregation realized by point-to-patch projections which further strengthen the correlations between images and points. Moreover, BrT works seamlessly for fusing the point cloud with multi-view images. We experimentally show that BrT surpasses state-of-the-art methods on SUN RGB-D and ScanNetV2 datasets.
Abstract:Few-shot learning models learn representations with limited human annotations, and such a learning paradigm demonstrates practicability in various tasks, e.g., image classification, object detection, etc. However, few-shot object detection methods suffer from an intrinsic defect that the limited training data makes the model cannot sufficiently explore semantic information. To tackle this, we introduce knowledge distillation to the few-shot object detection learning paradigm. We further run a motivating experiment, which demonstrates that in the process of knowledge distillation the empirical error of the teacher model degenerates the prediction performance of the few-shot object detection model, as the student. To understand the reasons behind this phenomenon, we revisit the learning paradigm of knowledge distillation on the few-shot object detection task from the causal theoretic standpoint, and accordingly, develop a Structural Causal Model. Following the theoretical guidance, we propose a backdoor adjustment-based knowledge distillation method for the few-shot object detection task, namely Disentangle and Remerge (D&R), to perform conditional causal intervention toward the corresponding Structural Causal Model. Theoretically, we provide an extended definition, i.e., general backdoor path, for the backdoor criterion, which can expand the theoretical application boundary of the backdoor criterion in specific cases. Empirically, the experiments on multiple benchmark datasets demonstrate that D&R can yield significant performance boosts in few-shot object detection.
Abstract:The prevailing graph neural network models have achieved significant progress in graph representation learning. However, in this paper, we uncover an ever-overlooked phenomenon: the pre-trained graph representation learning model tested with full graphs underperforms the model tested with well-pruned graphs. This observation reveals that there exist confounders in graphs, which may interfere with the model learning semantic information, and current graph representation learning methods have not eliminated their influence. To tackle this issue, we propose Robust Causal Graph Representation Learning (RCGRL) to learn robust graph representations against confounding effects. RCGRL introduces an active approach to generate instrumental variables under unconditional moment restrictions, which empowers the graph representation learning model to eliminate confounders, thereby capturing discriminative information that is causally related to downstream predictions. We offer theorems and proofs to guarantee the theoretical effectiveness of the proposed approach. Empirically, we conduct extensive experiments on a synthetic dataset and multiple benchmark datasets. The results demonstrate that compared with state-of-the-art methods, RCGRL achieves better prediction performance and generalization ability.
Abstract:The ability to handle objects in cluttered environment has been long anticipated by robotic community. However, most of works merely focus on manipulation instead of rendering hidden semantic information in cluttered objects. In this work, we introduce the scene graph for embodied exploration in cluttered scenarios to solve this problem. To validate our method in cluttered scenario, we adopt the Manipulation Question Answering (MQA) tasks as our test benchmark, which requires an embodied robot to have the active exploration ability and semantic understanding ability of vision and language.As a general solution framework to the task, we propose an imitation learning method to generate manipulations for exploration. Meanwhile, a VQA model based on dynamic scene graph is adopted to comprehend a series of RGB frames from wrist camera of manipulator along with every step of manipulation is conducted to answer questions in our framework.The experiments on of MQA dataset with different interaction requirements demonstrate that our proposed framework is effective for MQA task a representative of tasks in cluttered scenario.
Abstract:Graph instance contrastive learning has been proved as an effective task for Graph Neural Network (GNN) pre-training. However, one key issue may seriously impede the representative power in existing works: Positive instances created by current methods often miss crucial information of graphs or even yield illegal instances (such as non-chemically-aware graphs in molecular generation). To remedy this issue, we propose to select positive graph instances directly from existing graphs in the training set, which ultimately maintains the legality and similarity to the target graphs. Our selection is based on certain domain-specific pair-wise similarity measurements as well as sampling from a hierarchical graph encoding similarity relations among graphs. Besides, we develop an adaptive node-level pre-training method to dynamically mask nodes to distribute them evenly in the graph. We conduct extensive experiments on $13$ graph classification and node classification benchmark datasets from various domains. The results demonstrate that the GNN models pre-trained by our strategies can outperform those trained-from-scratch models as well as the variants obtained by existing methods.
Abstract:Detecting 3D keypoints from point clouds is important for shape reconstruction, while this work investigates the dual question: can shape reconstruction benefit 3D keypoint detection? Existing methods either seek salient features according to statistics of different orders or learn to predict keypoints that are invariant to transformation. Nevertheless, the idea of incorporating shape reconstruction into 3D keypoint detection is under-explored. We argue that this is restricted by former problem formulations. To this end, a novel unsupervised paradigm named SNAKE is proposed, which is short for shape-aware neural 3D keypoint field. Similar to recent coordinate-based radiance or distance field, our network takes 3D coordinates as inputs and predicts implicit shape indicators and keypoint saliency simultaneously, thus naturally entangling 3D keypoint detection and shape reconstruction. We achieve superior performance on various public benchmarks, including standalone object datasets ModelNet40, KeypointNet, SMPL meshes and scene-level datasets 3DMatch and Redwood. Intrinsic shape awareness brings several advantages as follows. (1) SNAKE generates 3D keypoints consistent with human semantic annotation, even without such supervision. (2) SNAKE outperforms counterparts in terms of repeatability, especially when the input point clouds are down-sampled. (3) the generated keypoints allow accurate geometric registration, notably in a zero-shot setting. Codes are available at https://github.com/zhongcl-thu/SNAKE
Abstract:Many adaptations of transformers have emerged to address the single-modal vision tasks, where self-attention modules are stacked to handle input sources like images. Intuitively, feeding multiple modalities of data to vision transformers could improve the performance, yet the inner-modal attentive weights may also be diluted, which could thus undermine the final performance. In this paper, we propose a multimodal token fusion method (TokenFusion), tailored for transformer-based vision tasks. To effectively fuse multiple modalities, TokenFusion dynamically detects uninformative tokens and substitutes these tokens with projected and aggregated inter-modal features. Residual positional alignment is also adopted to enable explicit utilization of the inter-modal alignments after fusion. The design of TokenFusion allows the transformer to learn correlations among multimodal features, while the single-modal transformer architecture remains largely intact. Extensive experiments are conducted on a variety of homogeneous and heterogeneous modalities and demonstrate that TokenFusion surpasses state-of-the-art methods in three typical vision tasks: multimodal image-to-image translation, RGB-depth semantic segmentation, and 3D object detection with point cloud and images.
Abstract:Nowadays, cameras equipped with AI systems can capture and analyze images to detect people automatically. However, the AI system can make mistakes when receiving deliberately designed patterns in the real world, i.e., physical adversarial examples. Prior works have shown that it is possible to print adversarial patches on clothes to evade DNN-based person detectors. However, these adversarial examples could have catastrophic drops in the attack success rate when the viewing angle (i.e., the camera's angle towards the object) changes. To perform a multi-angle attack, we propose Adversarial Texture (AdvTexture). AdvTexture can cover clothes with arbitrary shapes so that people wearing such clothes can hide from person detectors from different viewing angles. We propose a generative method, named Toroidal-Cropping-based Expandable Generative Attack (TC-EGA), to craft AdvTexture with repetitive structures. We printed several pieces of cloth with AdvTexure and then made T-shirts, skirts, and dresses in the physical world. Experiments showed that these clothes could fool person detectors in the physical world.
Abstract:After the great success of Vision Transformer variants (ViTs) in computer vision, it has also demonstrated great potential in domain adaptive semantic segmentation. Unfortunately, straightforwardly applying local ViTs in domain adaptive semantic segmentation does not bring in expected improvement. We find that the pitfall of local ViTs is due to the severe high-frequency components generated during both the pseudo-label construction and features alignment for target domains. These high-frequency components make the training of local ViTs very unsmooth and hurt their transferability. In this paper, we introduce a low-pass filtering mechanism, momentum network, to smooth the learning dynamics of target domain features and pseudo labels. Furthermore, we propose a dynamic of discrepancy measurement to align the distributions in the source and target domains via dynamic weights to evaluate the importance of the samples. After tackling the above issues, extensive experiments on sim2real benchmarks show that the proposed method outperforms the state-of-the-art methods. Our codes are available at https://github.com/alpc91/TransDA