Sparse knowledge graph (KG) scenarios pose a challenge for previous Knowledge Graph Completion (KGC) methods, that is, the completion performance decreases rapidly with the increase of graph sparsity. This problem is also exacerbated because of the widespread existence of sparse KGs in practical applications. To alleviate this challenge, we present a novel framework, LR-GCN, that is able to automatically capture valuable long-range dependency among entities to supplement insufficient structure features and distill logical reasoning knowledge for sparse KGC. The proposed approach comprises two main components: a GNN-based predictor and a reasoning path distiller. The reasoning path distiller explores high-order graph structures such as reasoning paths and encodes them as rich-semantic edges, explicitly compositing long-range dependencies into the predictor. This step also plays an essential role in densifying KGs, effectively alleviating the sparse issue. Furthermore, the path distiller further distills logical reasoning knowledge from these mined reasoning paths into the predictor. These two components are jointly optimized using a well-designed variational EM algorithm. Extensive experiments and analyses on four sparse benchmarks demonstrate the effectiveness of our proposed method.
Scene text detection is a challenging computer vision task due to the high variation in text shapes and ratios. In this work, we propose a scene text detector named Deformable Kernel Expansion (DKE), which incorporates the merits of both segmentation and contour-based detectors. DKE employs a segmentation module to segment the shrunken text region as the text kernel, then expands the text kernel contour to obtain text boundary by regressing the vertex-wise offsets. Generating the text kernel by segmentation enables DKE to inherit the arbitrary-shaped text region modeling capability of segmentation-based detectors. Regressing the kernel contour with some sampled vertices enables DKE to avoid the complicated pixel-level post-processing and better learn contour deformation as the contour-based detectors. Moreover, we propose an Optimal Bipartite Graph Matching Loss (OBGML) that measures the matching error between the predicted contour and the ground truth, which efficiently minimizes the global contour matching distance. Extensive experiments on CTW1500, Total-Text, MSRA-TD500, and ICDAR2015 demonstrate that DKE achieves a good tradeoff between accuracy and efficiency in scene text detection.
Currently, most existing person re-identification methods use Instance-Level features, which are extracted only from a single image. However, these Instance-Level features can easily ignore the discriminative information due to the appearance of each identity varies greatly in different images. Thus, it is necessary to exploit Identity-Level features, which can be shared across different images of each identity. In this paper, we propose to promote Instance-Level features to Identity-Level features by employing cross-attention to incorporate information from one image to another of the same identity, thus more unified and discriminative pedestrian information can be obtained. We propose a novel training framework named X-ReID. Specifically, a Cross Intra-Identity Instances module (IntraX) fuses different intra-identity instances to transfer Identity-Level knowledge and make Instance-Level features more compact. A Cross Inter-Identity Instances module (InterX) involves hard positive and hard negative instances to improve the attention response to the same identity instead of different identity, which minimizes intra-identity variation and maximizes inter-identity variation. Extensive experiments on benchmark datasets show the superiority of our method over existing works. Particularly, on the challenging MSMT17, our proposed method gains 1.1% mAP improvements when compared to the second place.
The SoccerNet 2022 challenges were the second annual video understanding challenges organized by the SoccerNet team. In 2022, the challenges were composed of 6 vision-based tasks: (1) action spotting, focusing on retrieving action timestamps in long untrimmed videos, (2) replay grounding, focusing on retrieving the live moment of an action shown in a replay, (3) pitch localization, focusing on detecting line and goal part elements, (4) camera calibration, dedicated to retrieving the intrinsic and extrinsic camera parameters, (5) player re-identification, focusing on retrieving the same players across multiple views, and (6) multiple object tracking, focusing on tracking players and the ball through unedited video streams. Compared to last year's challenges, tasks (1-2) had their evaluation metrics redefined to consider tighter temporal accuracies, and tasks (3-6) were novel, including their underlying data and annotations. More information on the tasks, challenges and leaderboards are available on https://www.soccer-net.org. Baselines and development kits are available on https://github.com/SoccerNet.
Existing detection methods commonly use a parameterized bounding box (BBox) to model and detect (horizontal) objects and an additional rotation angle parameter is used for rotated objects. We argue that such a mechanism has fundamental limitations in building an effective regression loss for rotation detection, especially for high-precision detection with high IoU (e.g. 0.75). Instead, we propose to model the rotated objects as Gaussian distributions. A direct advantage is that our new regression loss regarding the distance between two Gaussians e.g. Kullback-Leibler Divergence (KLD), can well align the actual detection performance metric, which is not well addressed in existing methods. Moreover, the two bottlenecks i.e. boundary discontinuity and square-like problem also disappear. We also propose an efficient Gaussian metric-based label assignment strategy to further boost the performance. Interestingly, by analyzing the BBox parameters' gradients under our Gaussian-based KLD loss, we show that these parameters are dynamically updated with interpretable physical meaning, which help explain the effectiveness of our approach, especially for high-precision detection. We extend our approach from 2-D to 3-D with a tailored algorithm design to handle the heading estimation, and experimental results on twelve public datasets (2-D/3-D, aerial/text/face images) with various base detectors show its superiority.
Scene graph generation (SGG) is a fundamental task aimed at detecting visual relations between objects in an image. The prevailing SGG methods require all object classes to be given in the training set. Such a closed setting limits the practical application of SGG. In this paper, we introduce open-vocabulary scene graph generation, a novel, realistic and challenging setting in which a model is trained on a set of base object classes but is required to infer relations for unseen target object classes. To this end, we propose a two-step method that firstly pre-trains on large amounts of coarse-grained region-caption data and then leverages two prompt-based techniques to finetune the pre-trained model without updating its parameters. Moreover, our method can support inference over completely unseen object classes, which existing methods are incapable of handling. On extensive experiments on three benchmark datasets, Visual Genome, GQA, and Open-Image, our method significantly outperforms recent, strong SGG methods on the setting of Ov-SGG, as well as on the conventional closed SGG.
Knowledge Graph Completion has been widely studied recently to complete missing elements within triples via mainly modeling graph structural features, but performs sensitive to the sparsity of graph structure. Relevant texts like entity names and descriptions, acting as another expression form for Knowledge Graphs (KGs), are expected to solve this challenge. Several methods have been proposed to utilize both structure and text messages with two encoders, but only achieved limited improvements due to the failure to balance weights between them. And reserving both structural and textual encoders during inference also suffers from heavily overwhelmed parameters. Motivated by Knowledge Distillation, we view knowledge as mappings from input to output probabilities and propose a plug-and-play framework VEM2L over sparse KGs to fuse knowledge extracted from text and structure messages into a unity. Specifically, we partition knowledge acquired by models into two nonoverlapping parts: one part is relevant to the fitting capacity upon training triples, which could be fused by motivating two encoders to learn from each other on training sets; the other reflects the generalization ability upon unobserved queries. And correspondingly, we propose a new fusion strategy proved by Variational EM algorithm to fuse the generalization ability of models, during which we also apply graph densification operations to further alleviate the sparse graph problem. By combining these two fusion methods, we propose VEM2L framework finally. Both detailed theoretical evidence, as well as quantitative and qualitative experiments, demonstrates the effectiveness and efficiency of our proposed framework.
Supervised person re-identification methods rely heavily on high-quality cross-camera training label. This significantly hinders the deployment of re-ID models in real-world applications. The unsupervised person re-ID methods can reduce the cost of data annotation, but their performance is still far lower than the supervised ones. In this paper, we make full use of the auxiliary information mined from the datasets for multi-modal feature learning, including camera information, temporal information and spatial information. By analyzing the style bias of cameras, the characteristics of pedestrians' motion trajectories and the positions of camera network, this paper designs three modules: Time-Overlapping Constraint (TOC), Spatio-Temporal Similarity (STS) and Same-Camera Penalty (SCP) to exploit the auxiliary information. Auxiliary information can improve the model performance and inference accuracy by constructing association constraints or fusing with visual features. In addition, this paper proposes three effective training tricks, including Restricted Label Smoothing Cross Entropy Loss (RLSCE), Weight Adaptive Triplet Loss (WATL) and Dynamic Training Iterations (DTI). The tricks achieve mAP of 72.4% and 81.1% on MARS and DukeMTMC-VideoReID, respectively. Combined with auxiliary information exploiting modules, our methods achieve mAP of 89.9% on DukeMTMC, where TOC, STS and SCP all contributed considerable performance improvements. The method proposed by this paper outperforms most existing unsupervised re-ID methods and narrows the gap between unsupervised and supervised re-ID methods. Our code is at https://github.com/tenghehan/AuxUSLReID.
A series of unsupervised video-based re-identification (re-ID) methods have been proposed to solve the problem of high labor cost required to annotate re-ID datasets. But their performance is still far lower than the supervised counterparts. In the mean time, clean datasets without noise are used in these methods, which is not realistic. In this paper, we propose to tackle this problem by learning re-ID models from automatically generated person tracklets by multiple objects tracking (MOT) algorithm. To this end, we design a tracklet-based multi-level clustering (TMC) framework to effectively learn the re-ID model from the noisy person tracklets. First, intra-tracklet isolation to reduce ID switch noise within tracklets; second, alternates between using inter-tracklet association to eliminate ID fragmentation noise and network training using the pseudo label. Extensive experiments on MARS with various manually generated noises show the effectiveness of the proposed framework. Specifically, the proposed framework achieved mAP 53.4% and rank-1 63.7% on the simulated tracklets with strongest noise, even outperforming the best existing method on clean tracklets. Based on the results, we believe that building re-ID models from automatically generated noisy tracklets is a reasonable approach and will also be an important way to make re-ID models feasible in real-world applications.