Abstract:Agentic crafting requires LLMs to operate in real-world environments over multiple turns by taking actions, observing outcomes, and iteratively refining artifacts. Despite its importance, the open-source community lacks a principled, end-to-end ecosystem to streamline agent development. We introduce the Agentic Learning Ecosystem (ALE), a foundational infrastructure that optimizes the production pipeline for agent LLMs. ALE consists of three components: ROLL, a post-training framework for weight optimization; ROCK, a sandbox environment manager for trajectory generation; and iFlow CLI, an agent framework for efficient context engineering. We release ROME (ROME is Obviously an Agentic Model), an open-source agent grounded by ALE and trained on over one million trajectories. Our approach includes data composition protocols for synthesizing complex behaviors and a novel policy optimization algorithm, Interaction-based Policy Alignment (IPA), which assigns credit over semantic interaction chunks rather than individual tokens to improve long-horizon training stability. Empirically, we evaluate ROME within a structured setting and introduce Terminal Bench Pro, a benchmark with improved scale and contamination control. ROME demonstrates strong performance across benchmarks like SWE-bench Verified and Terminal Bench, proving the effectiveness of the ALE infrastructure.
Abstract:Short-term precipitation nowcasting is an inherently uncertain and under-constrained spatiotemporal forecasting problem, especially for rapidly evolving and extreme weather events. Existing generative approaches rely primarily on visual conditioning, leaving future motion weakly constrained and ambiguous. We propose a language-aware multimodal nowcasting framework(LangPrecip) that treats meteorological text as a semantic motion constraint on precipitation evolution. By formulating nowcasting as a semantically constrained trajectory generation problem under the Rectified Flow paradigm, our method enables efficient and physically consistent integration of textual and radar information in latent space.We further introduce LangPrecip-160k, a large-scale multimodal dataset with 160k paired radar sequences and motion descriptions. Experiments on Swedish and MRMS datasets show consistent improvements over state-of-the-art methods, achieving over 60 \% and 19\% gains in heavy-rainfall CSI at an 80-minute lead time.
Abstract:Multimodal Emotion Recognition (MER) aims to accurately identify human emotional states by integrating heterogeneous modalities such as visual, auditory, and textual data. Existing approaches predominantly rely on unified emotion labels to supervise model training, often overlooking a critical challenge: inter-modal emotion conflicts, wherein different modalities within the same sample may express divergent emotional tendencies. In this work, we address this overlooked issue by proposing a novel framework, Typicality-based Consistent-aware Multimodal Emotion Recognition (TiCAL), inspired by the stage-wise nature of human emotion perception. TiCAL dynamically assesses the consistency of each training sample by leveraging pseudo unimodal emotion labels alongside a typicality estimation. To further enhance emotion representation, we embed features in a hyperbolic space, enabling the capture of fine-grained distinctions among emotional categories. By incorporating consistency estimates into the learning process, our method improves model performance, particularly on samples exhibiting high modality inconsistency. Extensive experiments on benchmark datasets, e.g, CMU-MOSEI and MER2023, validate the effectiveness of TiCAL in mitigating inter-modal emotional conflicts and enhancing overall recognition accuracy, e.g., with about 2.6% improvements over the state-of-the-art DMD.
Abstract:As large language models (LLMs) become more capable and widely used, ensuring the safety of their outputs is increasingly critical. Existing guardrail models, though useful in static evaluation settings, face two major limitations in real-world applications: (1) they typically output only binary "safe/unsafe" labels, which can be interpreted inconsistently across diverse safety policies, rendering them incapable of accommodating varying safety tolerances across domains; and (2) they require complete model outputs before performing safety checks, making them fundamentally incompatible with streaming LLM inference, thereby preventing timely intervention during generation and increasing exposure to harmful partial outputs. To address these challenges, we present Qwen3Guard, a series of multilingual safety guardrail models with two specialized variants: Generative Qwen3Guard, which casts safety classification as an instruction-following task to enable fine-grained tri-class judgments (safe, controversial, unsafe); and Stream Qwen3Guard, which introduces a token-level classification head for real-time safety monitoring during incremental text generation. Both variants are available in three sizes (0.6B, 4B, and 8B parameters) and support up to 119 languages and dialects, providing comprehensive, scalable, and low-latency safety moderation for global LLM deployments. Evaluated across English, Chinese, and multilingual benchmarks, Qwen3Guard achieves state-of-the-art performance in both prompt and response safety classification. All models are released under the Apache 2.0 license for public use.
Abstract:U-like networks have become fundamental frameworks in medical image segmentation through skip connections that bridge high-level semantics and low-level spatial details. Despite their success, conventional skip connections exhibit two key limitations: inter-feature constraints and intra-feature constraints. The inter-feature constraint refers to the static nature of feature fusion in traditional skip connections, where information is transmitted along fixed pathways regardless of feature content. The intra-feature constraint arises from the insufficient modeling of multi-scale feature interactions, thereby hindering the effective aggregation of global contextual information. To overcome these limitations, we propose a novel Dynamic Skip Connection (DSC) block that fundamentally enhances cross-layer connectivity through adaptive mechanisms. The DSC block integrates two complementary components. (1) Test-Time Training (TTT) module. This module addresses the inter-feature constraint by enabling dynamic adaptation of hidden representations during inference, facilitating content-aware feature refinement. (2) Dynamic Multi-Scale Kernel (DMSK) module. To mitigate the intra-feature constraint, this module adaptively selects kernel sizes based on global contextual cues, enhancing the network capacity for multi-scale feature integration. The DSC block is architecture-agnostic and can be seamlessly incorporated into existing U-like network structures. Extensive experiments demonstrate the plug-and-play effectiveness of the proposed DSC block across CNN-based, Transformer-based, hybrid CNN-Transformer, and Mamba-based U-like networks.




Abstract:Vision-based 3D semantic occupancy prediction is a critical task in 3D vision that integrates volumetric 3D reconstruction with semantic understanding. Existing methods, however, often rely on modular pipelines. These modules are typically optimized independently or use pre-configured inputs, leading to cascading errors. In this paper, we address this limitation by designing a novel causal loss that enables holistic, end-to-end supervision of the modular 2D-to-3D transformation pipeline. Grounded in the principle of 2D-to-3D semantic causality, this loss regulates the gradient flow from 3D voxel representations back to the 2D features. Consequently, it renders the entire pipeline differentiable, unifying the learning process and making previously non-trainable components fully learnable. Building on this principle, we propose the Semantic Causality-Aware 2D-to-3D Transformation, which comprises three components guided by our causal loss: Channel-Grouped Lifting for adaptive semantic mapping, Learnable Camera Offsets for enhanced robustness against camera perturbations, and Normalized Convolution for effective feature propagation. Extensive experiments demonstrate that our method achieves state-of-the-art performance on the Occ3D benchmark, demonstrating significant robustness to camera perturbations and improved 2D-to-3D semantic consistency.
Abstract:Large language models (LLMs) exhibit remarkable reasoning capabilities across diverse downstream tasks. However, their autoregressive nature leads to substantial inference latency, posing challenges for real-time applications. Speculative sampling mitigates this issue by introducing a drafting phase followed by a parallel validation phase, enabling faster token generation and verification. Existing approaches, however, overlook the inherent coherence in text generation, limiting their efficiency. To address this gap, we propose a Speculative Sampling with Syntactic and Semantic Coherence (S$^4$C) framework, which extends speculative sampling by leveraging multi-head drafting for rapid token generation and a continuous verification tree for efficient candidate validation and feature reuse. Experimental results demonstrate that S$^4$C surpasses baseline methods across mainstream tasks, offering enhanced efficiency, parallelism, and the ability to generate more valid tokens with fewer computational resources. On Spec-bench benchmarks, S$^4$C achieves an acceleration ratio of 2.26x-2.60x, outperforming state-of-the-art methods.
Abstract:The parameter-efficient adaptation of the image-text pretraining model CLIP for video-text retrieval is a prominent area of research. While CLIP is focused on image-level vision-language matching, video-text retrieval demands comprehensive understanding at the video level. Three key discrepancies emerge in the transfer from image-level to video-level: vision, language, and alignment. However, existing methods mainly focus on vision while neglecting language and alignment. In this paper, we propose Discrepancy Reduction in Vision, Language, and Alignment (DiscoVLA), which simultaneously mitigates all three discrepancies. Specifically, we introduce Image-Video Features Fusion to integrate image-level and video-level features, effectively tackling both vision and language discrepancies. Additionally, we generate pseudo image captions to learn fine-grained image-level alignment. To mitigate alignment discrepancies, we propose Image-to-Video Alignment Distillation, which leverages image-level alignment knowledge to enhance video-level alignment. Extensive experiments demonstrate the superiority of our DiscoVLA. In particular, on MSRVTT with CLIP (ViT-B/16), DiscoVLA outperforms previous methods by 1.5% in R@1, reaching a final score of 50.5% R@1. The code is available at https://github.com/LunarShen/DsicoVLA.
Abstract:Medical image segmentation is a critical task in computer vision, with UNet serving as a milestone architecture. The typical component of UNet family is the skip connection, however, their skip connections face two significant limitations: (1) they lack effective interaction between features at different scales, and (2) they rely on simple concatenation or addition operations, which constrain efficient information integration. While recent improvements to UNet have focused on enhancing encoder and decoder capabilities, these limitations remain overlooked. To overcome these challenges, we propose a novel multi-scale feature fusion method that reimagines the UNet decoding process as solving an initial value problem (IVP), treating skip connections as discrete nodes. By leveraging principles from the linear multistep method, we propose an adaptive ordinary differential equation method to enable effective multi-scale feature fusion. Our approach is independent of the encoder and decoder architectures, making it adaptable to various U-Net-like networks. Experiments on ACDC, KiTS2023, MSD brain tumor, and ISIC2017/2018 skin lesion segmentation datasets demonstrate improved feature utilization, reduced network parameters, and maintained high performance. The code is available at https://github.com/nayutayuki/FuseUNet.
Abstract:Visual Emotion Recognition (VER) is a critical yet challenging task aimed at inferring emotional states of individuals based on visual cues. However, existing works focus on single domains, e.g., realistic images or stickers, limiting VER models' cross-domain generalizability. To fill this gap, we introduce an Unsupervised Cross-Domain Visual Emotion Recognition (UCDVER) task, which aims to generalize visual emotion recognition from the source domain (e.g., realistic images) to the low-resource target domain (e.g., stickers) in an unsupervised manner. Compared to the conventional unsupervised domain adaptation problems, UCDVER presents two key challenges: a significant emotional expression variability and an affective distribution shift. To mitigate these issues, we propose the Knowledge-aligned Counterfactual-enhancement Diffusion Perception (KCDP) framework. Specifically, KCDP leverages a VLM to align emotional representations in a shared knowledge space and guides diffusion models for improved visual affective perception. Furthermore, a Counterfactual-Enhanced Language-image Emotional Alignment (CLIEA) method generates high-quality pseudo-labels for the target domain. Extensive experiments demonstrate that our model surpasses SOTA models in both perceptibility and generalization, e.g., gaining 12% improvements over the SOTA VER model TGCA-PVT. The project page is at https://yinwen2019.github.io/ucdver.