Abstract:Spatial-temporal causal time series (STC-TS) involve region-specific temporal observations driven by causally relevant covariates and interconnected across geographic or network-based spaces. Existing methods often model spatial and temporal dynamics independently and overlook causality-driven probabilistic forecasting, limiting their predictive power. To address this, we propose STOAT (Spatial-Temporal Probabilistic Causal Inference Network), a novel framework for probabilistic forecasting in STC-TS. The proposed method extends a causal inference approach by incorporating a spatial relation matrix that encodes interregional dependencies (e.g. proximity or connectivity), enabling spatially informed causal effect estimation. The resulting latent series are processed by deep probabilistic models to estimate the parameters of the distributions, enabling calibrated uncertainty modeling. We further explore multiple output distributions (e.g., Gaussian, Student's-$t$, Laplace) to capture region-specific variability. Experiments on COVID-19 data across six countries demonstrate that STOAT outperforms state-of-the-art probabilistic forecasting models (DeepAR, DeepVAR, Deep State Space Model, etc.) in key metrics, particularly in regions with strong spatial dependencies. By bridging causal inference and geospatial probabilistic forecasting, STOAT offers a generalizable framework for complex spatial-temporal tasks, such as epidemic management.
Abstract:Pathogen genome data offers valuable structure for spatial models, but its utility is limited by incomplete sequencing coverage. We propose a probabilistic framework for inferring genetic distances between unsequenced cases and known sequences within defined transmission chains, using time-aware evolutionary distance modeling. The method estimates pairwise divergence from collection dates and observed genetic distances, enabling biologically plausible imputation grounded in observed divergence patterns, without requiring sequence alignment or known transmission chains. Applied to highly pathogenic avian influenza A/H5 cases in wild birds in the United States, this approach supports scalable, uncertainty-aware augmentation of genomic datasets and enhances the integration of evolutionary information into spatiotemporal modeling workflows.
Abstract:Retrieval-Augmented Generation (RAG) systems empower large language models (LLMs) with external knowledge, yet struggle with efficiency-accuracy trade-offs when scaling to large knowledge graphs. Existing approaches often rely on monolithic graph retrieval, incurring unnecessary latency for simple queries and fragmented reasoning for complex multi-hop questions. To address these challenges, this paper propose SPLIT-RAG, a multi-agent RAG framework that addresses these limitations with question-driven semantic graph partitioning and collaborative subgraph retrieval. The innovative framework first create Semantic Partitioning of Linked Information, then use the Type-Specialized knowledge base to achieve Multi-Agent RAG. The attribute-aware graph segmentation manages to divide knowledge graphs into semantically coherent subgraphs, ensuring subgraphs align with different query types, while lightweight LLM agents are assigned to partitioned subgraphs, and only relevant partitions are activated during retrieval, thus reduce search space while enhancing efficiency. Finally, a hierarchical merging module resolves inconsistencies across subgraph-derived answers through logical verifications. Extensive experimental validation demonstrates considerable improvements compared to existing approaches.
Abstract:Understanding human mobility through Point-of-Interest (POI) recommendation is increasingly important for applications such as urban planning, personalized services, and generative agent simulation. However, progress in this field is hindered by two key challenges: the over-reliance on older datasets from 2012-2013 and the lack of reproducible, city-level check-in datasets that reflect diverse global regions. To address these gaps, we present Massive-STEPS (Massive Semantic Trajectories for Understanding POI Check-ins), a large-scale, publicly available benchmark dataset built upon the Semantic Trails dataset and enriched with semantic POI metadata. Massive-STEPS spans 12 geographically and culturally diverse cities and features more recent (2017-2018) and longer-duration (24 months) check-in data than prior datasets. We benchmarked a wide range of POI recommendation models on Massive-STEPS using both supervised and zero-shot approaches, and evaluated their performance across multiple urban contexts. By releasing Massive-STEPS, we aim to facilitate reproducible and equitable research in human mobility and POI recommendation. The dataset and benchmarking code are available at: https://github.com/cruiseresearchgroup/Massive-STEPS
Abstract:This paper introduces SOCIA (Simulation Orchestration for Cyber-physical-social Intelligence and Agents), a novel end-to-end framework leveraging Large Language Model (LLM)-based multi-agent systems to automate the generation of high-fidelity Cyber-Physical-Social (CPS) simulators. Addressing the challenges of labor-intensive manual simulator development and complex data calibration, SOCIA integrates a centralized orchestration manager that coordinates specialized agents for tasks including data comprehension, code generation, simulation execution, and iterative evaluation-feedback loops. Through empirical evaluations across diverse CPS tasks, such as mask adoption behavior simulation (social), personal mobility generation (physical), and user modeling (cyber), SOCIA demonstrates its ability to produce high-fidelity, scalable simulations with reduced human intervention. These results highlight SOCIA's potential to offer a scalable solution for studying complex CPS phenomena
Abstract:With the growing electric vehicles (EVs) charging demand, urban planners face the challenges of providing charging infrastructure at optimal locations. For example, range anxiety during long-distance travel and the inadequate distribution of residential charging stations are the major issues many cities face. To achieve reasonable estimation and deployment of the charging demand, we develop a data-driven system based on existing EV trips in New South Wales (NSW) state, Australia, incorporating multiple factors that enhance the geographical feasibility of recommended charging stations. Our system integrates data sources including EV trip data, geographical data such as route data and Local Government Area (LGA) boundaries, as well as features like fire and flood risks, and Points of Interest (POIs). We visualize our results to intuitively demonstrate the findings from our data-driven, multi-source fusion system, and evaluate them through case studies. The outcome of this work can provide a platform for discussion to develop new insights that could be used to give guidance on where to position future EV charging stations.
Abstract:Generative agents have been increasingly used to simulate human behaviour in silico, driven by large language models (LLMs). These simulacra serve as sandboxes for studying human behaviour without compromising privacy or safety. However, it remains unclear whether such agents can truly represent real individuals. This work compares survey data from the Understanding America Study (UAS) on healthcare decision-making with simulated responses from generative agents. Using demographic-based prompt engineering, we create digital twins of survey respondents and analyse how well different LLMs reproduce real-world behaviours. Our findings show that some LLMs fail to reflect realistic decision-making, such as predicting universal vaccine acceptance. However, Llama 3 captures variations across race and Income more accurately but also introduces biases not present in the UAS data. This study highlights the potential of generative agents for behavioural research while underscoring the risks of bias from both LLMs and prompting strategies.
Abstract:Effective long-term memory management is crucial for language models handling extended contexts. We introduce a novel framework that dynamically ranks memory entries based on relevance. Unlike previous works, our model introduces a novel relevance scoring and a pointwise re-ranking model for key-value embeddings, inspired by learning-to-rank techniques in information retrieval. Enhanced Ranked Memory Augmented Retrieval ERMAR achieves state-of-the-art results on standard benchmarks.
Abstract:Graph Retrieval-Augmented Generation (GraphRAG) has proven highly effective in enhancing the performance of Large Language Models (LLMs) on tasks that require external knowledge. By leveraging Knowledge Graphs (KGs), GraphRAG improves information retrieval for complex reasoning tasks, providing more precise and comprehensive retrieval and generating more accurate responses to QAs. However, most RAG methods fall short in addressing multi-step reasoning, particularly when both information extraction and inference are necessary. To address this limitation, this paper presents Knowledge Graph-Based Iterative Retrieval-Augmented Generation (KG-IRAG), a novel framework that integrates KGs with iterative reasoning to improve LLMs' ability to handle queries involving temporal and logical dependencies. Through iterative retrieval steps, KG-IRAG incrementally gathers relevant data from external KGs, enabling step-by-step reasoning. The proposed approach is particularly suited for scenarios where reasoning is required alongside dynamic temporal data extraction, such as determining optimal travel times based on weather conditions or traffic patterns. Experimental results show that KG-IRAG improves accuracy in complex reasoning tasks by effectively integrating external knowledge with iterative, logic-based retrieval. Additionally, three new datasets: weatherQA-Irish, weatherQA-Sydney, and trafficQA-TFNSW, are formed to evaluate KG-IRAG's performance, demonstrating its potential beyond traditional RAG applications.
Abstract:Urban traffic forecasting is a commonly encountered problem, with wide-ranging applications in fields such as urban planning, civil engineering and transport. In this paper, we study the enhancement of traffic forecasting with pre-training, focusing on spatio-temporal graph methods. While various machine learning methods to solve traffic forecasting problems have been explored and extensively studied, there is a gap of a more contextual approach: studying how relevant non-traffic data can improve prediction performance on traffic forecasting problems. We call this data spatial context. We introduce a novel method of combining road and traffic information through the notion of a traffic quotient graph, a quotient graph formed from road geometry and traffic sensors. We also define a way to encode this relationship in the form of a geometric encoder, pre-trained using contrastive learning methods and enhanced with OpenStreetMap data. We introduce and discuss ways to integrate this geometric encoder with existing graph neural network (GNN)-based traffic forecasting models, using a contrastive pre-training paradigm. We demonstrate the potential for this hybrid model to improve generalisation and performance with zero additional traffic data. Code for this paper is available at https://github.com/mattchrlw/forecasting-on-new-roads.