Abstract:This paper explores the application of movable antenna (MA), a cutting-edge technology with the capability of altering antenna positions, in a symbiotic radio (SR) system enabled by reconfigurable intelligent surface (RIS). The goal is to fully exploit the capabilities of both MA and RIS, constructing a better transmission environment for the co-existing primary and secondary transmission systems. For both parasitic SR (PSR) and commensal SR (CSR) scenarios with the channel uncertainties experienced by all transmission links, we design a robust transmission scheme with the goal of maximizing the primary rate while ensuring the secondary transmission quality. To address the maximization problem with thorny non-convex characteristics, we propose an alternating optimization framework that utilizes the General S-Procedure, General Sign-Definiteness Principle, successive convex approximation (SCA), and simulated annealing (SA) improved particle swarm optimization (SA-PSO) algorithms. Numerical results validate that the CSR scenario significantly outperforms the PSR scenario in terms of primary rate, and also show that compared to the fixed-position antenna scheme, the proposed MA scheme can increase the primary rate by 1.62 bps/Hz and 2.37 bps/Hz for the PSR and CSR scenarios, respectively.
Abstract:In this paper, we propose a movable antenna (MA) empowered scheme for symbiotic radio (SR) communication systems. Specifically, multiple antennas at the primary transmitter (PT) can be flexibly moved to favorable locations to boost the channel conditions of the primary and secondary transmissions. The primary transmission is achieved by the active transmission from the PT to the primary user (PU), while the backscatter device (BD) takes a ride over the incident signal from the PT to passively send the secondary signal to the PU. Under this setup, we consider a primary rate maximization problem by jointly optimizing the transmit beamforming and the positions of MAs at the PT under a practical bit error rate constraint on the secondary transmission. Then, an alternating optimization framework with the utilization of the successive convex approximation, semi-definite processing and simulated annealing (SA) modified particle swarm optimization (SA-PSO) methods is proposed to find the solution of the transmit beamforming and MAs' positions. Finally, numerical results are provided to demonstrate the performance improvement provided by the proposed MA empowered scheme and the proposed algorithm.