University of Notre Dame
Abstract:The most essential feature of aviation equipment is high quality, including high performance, high stability and high reliability. In this paper, we propose a novel hierarchical error assessment framework for aircraft CAD models within a manufacturing-and-measurement platform, termed HEA-MM. HEA-MM employs structured light scanners to obtain comprehensive 3D measurements of manufactured workpieces. The measured point cloud is registered with the reference CAD model, followed by an error analysis conducted at three hierarchical levels: global, part, and feature. At the global level, the error analysis evaluates the overall deviation of the scanned point cloud from the reference CAD model. At the part level, error analysis is performed on these patches underlying the point clouds. We propose a novel optimization-based primitive refinement method to obtain a set of meaningful patches of point clouds. Two basic operations, splitting and merging, are introduced to refine the coarse primitives. At the feature level, error analysis is performed on circular holes, which are commonly found in CAD models. To facilitate it, a two-stage algorithm is introduced for the detection of circular holes. First, edge points are identified using a tensor-voting algorithm. Then, multiple circles are fitted through a hypothesize-and-clusterize framework, ensuring accurate detection and analysis of the circular features. Experimental results on various aircraft CAD models demonstrate the effectiveness of our proposed method.
Abstract:Ensuring the safety and extended operational life of fighter aircraft necessitates frequent and exhaustive inspections. While surface defect detection is feasible for human inspectors, manual methods face critical limitations in scalability, efficiency, and consistency due to the vast surface area, structural complexity, and operational demands of aircraft maintenance. We propose a smart surface damage detection and localization system for fighter aircraft, termed J-DDL. J-DDL integrates 2D images and 3D point clouds of the entire aircraft surface, captured using a combined system of laser scanners and cameras, to achieve precise damage detection and localization. Central to our system is a novel damage detection network built on the YOLO architecture, specifically optimized for identifying surface defects in 2D aircraft images. Key innovations include lightweight Fasternet blocks for efficient feature extraction, an optimized neck architecture incorporating Efficient Multiscale Attention (EMA) modules for superior feature aggregation, and the introduction of a novel loss function, Inner-CIOU, to enhance detection accuracy. After detecting damage in 2D images, the system maps the identified anomalies onto corresponding 3D point clouds, enabling accurate 3D localization of defects across the aircraft surface. Our J-DDL not only streamlines the inspection process but also ensures more comprehensive and detailed coverage of large and complex aircraft exteriors. To facilitate further advancements in this domain, we have developed the first publicly available dataset specifically focused on aircraft damage. Experimental evaluations validate the effectiveness of our framework, underscoring its potential to significantly advance automated aircraft inspection technologies.
Abstract:This paper introduces an efficient Vision-Language Model (VLM) pipeline specifically optimized for deployment on embedded devices, such as those used in robotics and autonomous driving. The pipeline significantly reduces the computational overhead by jointly leveraging patch selection to filter irrelevant camera views, a token selection module to reduce input sequence length for the LLM, and speculative decoding to accelerate token generation. Evaluation on the NVIDIA DRIVE Thor platform for automonous driving application, our pipeline achieves $2.5\times$ end-to-end latency reduction without compromising task accuracy. The speed-up further increases to $3.2\times$ when applying FP8 post-training quantization. These results demonstrate our pipeline as a viable solution for enabling real-time VLM deployment in resource-constrained environments.
Abstract:Despite their success in numerous fields, the potential of foundation models for modeling and understanding human behavior remains largely unexplored. We introduce Be.FM, one of the first open foundation models designed for human behavior modeling. Built upon open-source large language models and fine-tuned on a diverse range of behavioral data, Be.FM can be used to understand and predict human decision-making. We construct a comprehensive set of benchmark tasks for testing the capabilities of behavioral foundation models. Our results demonstrate that Be.FM can predict behaviors, infer characteristics of individuals and populations, generate insights about contexts, and apply behavioral science knowledge.
Abstract:Time series forecasting plays a crucial role in various fields, and the methods based on frequency domain analysis have become an important branch. However, most existing studies focus on the design of elaborate model architectures and are often tailored for limited datasets, still lacking universality. Besides, the assumption of independent and identically distributed (IID) data also contradicts the strong correlation of the time domain labels. To address these issues, abandoning time domain supervision, we propose a purely frequency domain supervision approach named cross-dimensional frequency (X-Freq) loss. Specifically, based on a statistical phenomenon, we first prove that the information entropy of the time series is higher than its spectral entropy, which implies higher certainty in frequency domain and thus can provide better supervision. Secondly, the Fourier Transform and the Wavelet Transform are applied to the time dimension and the channel dimension of the time series respectively, to capture the long-term and short-term frequency variations as well as the spatial configuration features. Thirdly, the loss between predictions and targets is uniformly computed in the frequency domain. Moreover, we plug-and-play incorporate X-Freq into multiple advanced forecasting models and compare on 14 real-world datasets. The experimental results demonstrate that, without making any modification to the original architectures or hyperparameters, X-Freq can improve the forecasting performance by an average of 3.3% on long-term forecasting datasets and 27.7% on short-term ones, showcasing superior generality and practicality. The code will be released publicly.
Abstract:With the accelerated development of Industry 4.0, intelligent manufacturing systems increasingly require efficient task allocation and scheduling in multi-robot systems. However, existing methods rely on domain expertise and face challenges in adapting to dynamic production constraints. Additionally, enterprises have high privacy requirements for production scheduling data, which prevents the use of cloud-based large language models (LLMs) for solution development. To address these challenges, there is an urgent need for an automated modeling solution that meets data privacy requirements. This study proposes a knowledge-augmented mixed integer linear programming (MILP) automated formulation framework, integrating local LLMs with domain-specific knowledge bases to generate executable code from natural language descriptions automatically. The framework employs a knowledge-guided DeepSeek-R1-Distill-Qwen-32B model to extract complex spatiotemporal constraints (82% average accuracy) and leverages a supervised fine-tuned Qwen2.5-Coder-7B-Instruct model for efficient MILP code generation (90% average accuracy). Experimental results demonstrate that the framework successfully achieves automatic modeling in the aircraft skin manufacturing case while ensuring data privacy and computational efficiency. This research provides a low-barrier and highly reliable technical path for modeling in complex industrial scenarios.
Abstract:We propose VRSketch2Gaussian, a first VR sketch-guided, multi-modal, native 3D object generation framework that incorporates a 3D Gaussian Splatting representation. As part of our work, we introduce VRSS, the first large-scale paired dataset containing VR sketches, text, images, and 3DGS, bridging the gap in multi-modal VR sketch-based generation. Our approach features the following key innovations: 1) Sketch-CLIP feature alignment. We propose a two-stage alignment strategy that bridges the domain gap between sparse VR sketch embeddings and rich CLIP embeddings, facilitating both VR sketch-based retrieval and generation tasks. 2) Fine-Grained multi-modal conditioning. We disentangle the 3D generation process by using explicit VR sketches for geometric conditioning and text descriptions for appearance control. To facilitate this, we propose a generalizable VR sketch encoder that effectively aligns different modalities. 3) Efficient and high-fidelity 3D native generation. Our method leverages a 3D-native generation approach that enables fast and texture-rich 3D object synthesis. Experiments conducted on our VRSS dataset demonstrate that our method achieves high-quality, multi-modal VR sketch-based 3D generation. We believe our VRSS dataset and VRsketch2Gaussian method will be beneficial for the 3D generation community.
Abstract:The vehicle dynamics model serves as a vital component of autonomous driving systems, as it describes the temporal changes in vehicle state. In a long period, researchers have made significant endeavors to accurately model vehicle dynamics. Traditional physics-based methods employ mathematical formulae to model vehicle dynamics, but they are unable to adequately describe complex vehicle systems due to the simplifications they entail. Recent advancements in deep learning-based methods have addressed this limitation by directly regressing vehicle dynamics. However, the performance and generalization capabilities still require further enhancement. In this letter, we address these problems by proposing a vehicle dynamics correction system that leverages deep neural networks to correct the state residuals of a physical model instead of directly estimating the states. This system greatly reduces the difficulty of network learning and thus improves the estimation accuracy of vehicle dynamics. Furthermore, we have developed a novel Transformer-based dynamics residual correction network, DyTR. This network implicitly represents state residuals as high-dimensional queries, and iteratively updates the estimated residuals by interacting with dynamics state features. The experiments in simulations demonstrate the proposed system works much better than physics model, and our proposed DyTR model achieves the best performances on dynamics state residual correction task, reducing the state prediction errors of a simple 3 DoF vehicle model by an average of 92.3% and 59.9% in two dataset, respectively.
Abstract:Neural news recommender systems (RSs) have integrated language models (LMs) to encode news articles with rich textual information into representations, thereby improving the recommendation process. Most studies suggest that (i) news RSs achieve better performance with larger pre-trained language models (PLMs) than shallow language models (SLMs), and (ii) that large language models (LLMs) outperform PLMs. However, other studies indicate that PLMs sometimes lead to worse performance than SLMs. Thus, it remains unclear whether using larger LMs consistently improves the performance of news RSs. In this paper, we revisit, unify, and extend these comparisons of the effectiveness of LMs in news RSs using the real-world MIND dataset. We find that (i) larger LMs do not necessarily translate to better performance in news RSs, and (ii) they require stricter fine-tuning hyperparameter selection and greater computational resources to achieve optimal recommendation performance than smaller LMs. On the positive side, our experiments show that larger LMs lead to better recommendation performance for cold-start users: they alleviate dependency on extensive user interaction history and make recommendations more reliant on the news content.
Abstract:Large Language Models (LLMs) can benefit from useful experiences to improve their performance on specific tasks. However, finding helpful experiences for different LLMs is not obvious, since it is unclear what experiences suit specific LLMs. Previous studies intended to automatically find useful experiences using LLMs, while it is difficult to ensure the effectiveness of the obtained experience. In this paper, we propose Stochastic Experience Optimization (SEO), an iterative approach that finds optimized model-specific experience without modifying model parameters through experience update in natural language. In SEO, we propose a stochastic validation method to ensure the update direction of experience, avoiding unavailing updates. Experimental results on three tasks for three LLMs demonstrate that experiences optimized by SEO can achieve consistently improved performance. Further analysis indicates that SEO-optimized experience can generalize to out-of-distribution data, boosting the performance of LLMs on similar tasks.