Abstract:Multi-agent reinforcement learning (MARL) has achieved remarkable success in various challenging problems. Meanwhile, more and more benchmarks have emerged and provided some standards to evaluate the algorithms in different fields. On the one hand, the virtual MARL environments lack knowledge of real-world tasks and actuator abilities, and on the other hand, the current task-specified multi-robot platform has poor support for the generality of multi-agent reinforcement learning algorithms and lacks support for transferring from simulation to the real environment. Bridging the gap between the virtual MARL environments and the real multi-robot platform becomes the key to promoting the practicability of MARL algorithms. This paper proposes a novel MARL environment for real multi-robot tasks named NeuronsMAE (Neurons Multi-Agent Environment). This environment supports cooperative and competitive multi-robot tasks and is configured with rich parameter interfaces to study the multi-agent policy transfer from simulation to reality. With this platform, we evaluate various popular MARL algorithms and build a new MARL benchmark for multi-robot tasks. We hope that this platform will facilitate the research and application of MARL algorithms for real robot tasks. Information about the benchmark and the open-source code will be released.
Abstract:Task-agnostic cross-domain pre-training shows great potential in image-based Reinforcement Learning (RL) but poses a big challenge. In this paper, we propose CRPTpro, a Cross-domain self-supervised Random Pre-Training framework with prototypes for image-based RL. CRPTpro employs cross-domain random policy to easily and quickly sample diverse data from multiple domains, to improve pre-training efficiency. Moreover, prototypical representation learning with a novel intrinsic loss is proposed to pre-train an effective and generic encoder across different domains. Without finetuning, the cross-domain encoder can be implemented for challenging downstream visual-control RL tasks defined in different domains efficiently. Compared with prior arts like APT and Proto-RL, CRPTpro achieves better performance on cross-domain downstream RL tasks without extra training on exploration agents for expert data collection, greatly reducing the burden of pre-training. Experiments on DeepMind Control suite (DMControl) demonstrate that CRPTpro outperforms APT significantly on 11/12 cross-domain RL tasks with only 39% pre-training hours, becoming a state-of-the-art cross-domain pre-training method in both policy learning performance and pre-training efficiency. The complete code will be released at https://github.com/liuxin0824/CRPTpro.
Abstract:Self-supervised depth estimation draws a lot of attention recently as it can promote the 3D sensing capabilities of self-driving vehicles. However, it intrinsically relies upon the photometric consistency assumption, which hardly holds during nighttime. Although various supervised nighttime image enhancement methods have been proposed, their generalization performance in challenging driving scenarios is not satisfactory. To this end, we propose the first method that jointly learns a nighttime image enhancer and a depth estimator, without using ground truth for either task. Our method tightly entangles two self-supervised tasks using a newly proposed uncertain pixel masking strategy. This strategy originates from the observation that nighttime images not only suffer from underexposed regions but also from overexposed regions. By fitting a bridge-shaped curve to the illumination map distribution, both regions are suppressed and two tasks are bridged naturally. We benchmark the method on two established datasets: nuScenes and RobotCar and demonstrate state-of-the-art performance on both of them. Detailed ablations also reveal the mechanism of our proposal. Last but not least, to mitigate the problem of sparse ground truth of existing datasets, we provide a new photo-realistically enhanced nighttime dataset based upon CARLA. It brings meaningful new challenges to the community. Codes, data, and models are available at https://github.com/ucaszyp/STEPS.
Abstract:Unmanned combat air vehicle (UCAV) combat is a challenging scenario with continuous action space. In this paper, we propose a general hierarchical framework to resolve the within-vision-range (WVR) air-to-air combat problem under 6 dimensions of degree (6-DOF) dynamics. The core idea is to divide the whole decision process into two loops and use reinforcement learning (RL) to solve them separately. The outer loop takes into account the current combat situation and decides the expected macro behavior of the aircraft according to a combat strategy. Then the inner loop tracks the macro behavior with a flight controller by calculating the actual input signals for the aircraft. We design the Markov decision process for both the outer loop strategy and inner loop controller, and train them by proximal policy optimization (PPO) algorithm. For the inner loop controller, we design an effective reward function to accurately track various macro behavior. For the outer loop strategy, we further adopt a fictitious self-play mechanism to improve the combat performance by constantly combating against the historical strategies. Experiment results show that the inner loop controller can achieve better tracking performance than fine-tuned PID controller, and the outer loop strategy can perform complex maneuvers to get higher and higher winning rate, with the generation evolves.
Abstract:The latent world model provides a promising way to learn policies in a compact latent space for tasks with high-dimensional observations, however, its generalization across diverse environments with unseen dynamics remains challenging. Although the recurrent structure utilized in current advances helps to capture local dynamics, modeling only state transitions without an explicit understanding of environmental context limits the generalization ability of the dynamics model. To address this issue, we propose a Prototypical Context-Aware Dynamics (ProtoCAD) model, which captures the local dynamics by time consistent latent context and enables dynamics generalization in high-dimensional control tasks. ProtoCAD extracts useful contextual information with the help of the prototypes clustered over batch and benefits model-based RL in two folds: 1) It utilizes a temporally consistent prototypical regularizer that encourages the prototype assignments produced for different time parts of the same latent trajectory to be temporally consistent instead of comparing the features; 2) A context representation is designed which combines both the projection embedding of latent states and aggregated prototypes and can significantly improve the dynamics generalization ability. Extensive experiments show that ProtoCAD surpasses existing methods in terms of dynamics generalization. Compared with the recurrent-based model RSSM, ProtoCAD delivers 13.2% and 26.7% better mean and median performance across all dynamics generalization tasks.
Abstract:Realistic and diverse simulation scenarios with reactive and feasible agent behaviors can be used for validation and verification of self-driving system performance without relying on expensive and time-consuming real-world testing. Existing simulators rely on heuristic-based behavior models for background vehicles, which cannot capture the complex interactive behaviors in real-world scenarios. To bridge the gap between simulation and the real world, we propose TrajGen, a two-stage trajectory generation framework, which can capture more realistic behaviors directly from human demonstration. In particular, TrajGen consists of the multi-modal trajectory prediction stage and the reinforcement learning based trajectory modification stage. In the first stage, we propose a novel auxiliary RouteLoss for the trajectory prediction model to generate multi-modal diverse trajectories in the drivable area. In the second stage, reinforcement learning is used to track the predicted trajectories while avoiding collisions, which can improve the feasibility of generated trajectories. In addition, we develop a data-driven simulator I-Sim that can be used to train reinforcement learning models in parallel based on naturalistic driving data. The vehicle model in I-Sim can guarantee that the generated trajectories by TrajGen satisfy vehicle kinematic constraints. Finally, we give comprehensive metrics to evaluate generated trajectories for simulation scenarios, which shows that TrajGen outperforms either trajectory prediction or inverse reinforcement learning in terms of fidelity, reactivity, feasibility, and diversity.
Abstract:Multi-task intersection navigation including the unprotected turning left, turning right, and going straight in dense traffic is still a challenging task for autonomous driving. For the human driver, the negotiation skill with other interactive vehicles is the key to guarantee safety and efficiency. However, it is hard to balance the safety and efficiency of the autonomous vehicle for multi-task intersection navigation. In this paper, we formulate a multi-task safe reinforcement learning with social attention to improve the safety and efficiency when interacting with other traffic participants. Specifically, the social attention module is used to focus on the states of negotiation vehicles. In addition, a safety layer is added to the multi-task reinforcement learning framework to guarantee safe negotiation. We compare the experiments in the simulator SUMO with abundant traffic flows and CARLA with high-fidelity vehicle models, which both show that the proposed algorithm can improve safety with consistent traffic efficiency for multi-task intersection navigation.
Abstract:Recent works have demonstrated that transformer can achieve promising performance in computer vision, by exploiting the relationship among image patches with self-attention. While they only consider the attention in a single feature layer, but ignore the complementarity of attention in different levels. In this paper, we propose the broad attention to improve the performance by incorporating the attention relationship of different layers for vision transformer, which is called BViT. The broad attention is implemented by broad connection and parameter-free attention. Broad connection of each transformer layer promotes the transmission and integration of information for BViT. Without introducing additional trainable parameters, parameter-free attention jointly focuses on the already available attention information in different layers for extracting useful information and building their relationship. Experiments on image classification tasks demonstrate that BViT delivers state-of-the-art accuracy of 74.8\%/81.6\% top-1 accuracy on ImageNet with 5M/22M parameters. Moreover, we transfer BViT to downstream object recognition benchmarks to achieve 98.9\% and 89.9\% on CIFAR10 and CIFAR100 respectively that exceed ViT with fewer parameters. For the generalization test, the broad attention in Swin Transformer and T2T-ViT also bring an improvement of more than 1\%. To sum up, broad attention is promising to promote the performance of attention based models. Code and pre-trained models are available at https://github.com/DRL-CASIA/Broad_ViT.
Abstract:Different from other deep scalable architecture based NAS approaches, Broad Neural Architecture Search (BNAS) proposes a broad one which consists of convolution and enhancement blocks, dubbed Broad Convolutional Neural Network (BCNN) as search space for amazing efficiency improvement. BCNN reuses the topologies of cells in convolution block, so that BNAS can employ few cells for efficient search. Moreover, multi-scale feature fusion and knowledge embedding are proposed to improve the performance of BCNN with shallow topology. However, BNAS suffers some drawbacks: 1) insufficient representation diversity for feature fusion and enhancement, and 2) time consuming of knowledge embedding design by human expert. In this paper, we propose Stacked BNAS whose search space is a developed broad scalable architecture named Stacked BCNN, with better performance than BNAS. On the one hand, Stacked BCNN treats mini-BCNN as the basic block to preserve comprehensive representation and deliver powerful feature extraction ability. On the other hand, we propose Knowledge Embedding Search (KES) to learn appropriate knowledge embeddings. Experimental results show that 1) Stacked BNAS obtains better performance than BNAS, 2) KES contributes to reduce the parameters of learned architecture with satisfactory performance, and 3) Stacked BNAS delivers state-of-the-art efficiency of 0.02 GPU days.
Abstract:In recent years, control under urban intersection scenarios becomes an emerging research topic. In such scenarios, the autonomous vehicle confronts complicated situations since it must deal with the interaction with social vehicles timely while obeying the traffic rules. Generally, the autonomous vehicle is supposed to avoid collisions while pursuing better efficiency. The existing work fails to provide a framework that emphasizes the integrity of the scenarios while being able to deploy and test reinforcement learning(RL) methods. Specifically, we propose a benchmark for training and testing RL-based autonomous driving agents in complex intersection scenarios, which is called RL-CIS. Then, a set of baselines are deployed consists of various algorithms. The test benchmark and baselines are to provide a fair and comprehensive training and testing platform for the study of RL for autonomous driving in the intersection scenario, advancing the progress of RL-based methods for intersection autonomous driving control. The code of our proposed framework can be found at https://github.com/liuyuqi123/ComplexUrbanScenarios.