Abstract:Graph Retrieval Augmented Generation (GraphRAG) effectively enhances external knowledge integration capabilities by explicitly modeling knowledge relationships, thereby improving the factual accuracy and generation quality of Large Language Models (LLMs) in specialized domains. However, existing methods suffer from two inherent limitations: 1) Inefficient Information Aggregation: They rely on a single agent and fixed iterative patterns, making it difficult to adaptively capture multi-level textual, structural, and degree information within graph data. 2) Rigid Reasoning Mechanism: They employ preset reasoning schemes, which cannot dynamically adjust reasoning depth nor achieve precise semantic correction. To overcome these limitations, we propose Graph Counselor, an GraphRAG method based on multi-agent collaboration. This method uses the Adaptive Graph Information Extraction Module (AGIEM), where Planning, Thought, and Execution Agents work together to precisely model complex graph structures and dynamically adjust information extraction strategies, addressing the challenges of multi-level dependency modeling and adaptive reasoning depth. Additionally, the Self-Reflection with Multiple Perspectives (SR) module improves the accuracy and semantic consistency of reasoning results through self-reflection and backward reasoning mechanisms. Experiments demonstrate that Graph Counselor outperforms existing methods in multiple graph reasoning tasks, exhibiting higher reasoning accuracy and generalization ability. Our code is available at https://github.com/gjq100/Graph-Counselor.git.
Abstract:Rotational computed laminography (CL) has broad application potential in three-dimensional imaging of plate-like objects, as it only needs x-ray to pass through the tested object in the thickness direction during the imaging process. In this study, a square cross-section FOV rotational CL (SC-CL) was proposed. Then, the FDK-type analytical reconstruction algorithm applicable to the SC-CL was derived. On this basis, the proposed method was validated through numerical experiments.
Abstract:Objective: Brain is a fantastic organ that helps creature adapting to the environment. Network is the most essential structure of brain, but the capability of a simple network is still not very clear. In this study, we try to expound some brain functions only by the network property. Methods: Every network can be equivalent to a simplified network, which is expressed by an equation set. The dynamic of the equation set can be described by some basic equations, which is based on the mathematical derivation. Results (1) In a closed network, the stability is based on the excitatory/inhibitory synapse proportion. Spike probabilities in the assembly can meet the solution of a nonlinear equation set. (2) Network activity can spontaneously evolve into a certain distribution under different stimulation, which is closely related to decision making. (3) Short memory can be formed by coupling of network assemblies. Conclusion: The essential property of a network may contribute to some important brain functions.