Alert button
Picture for Ding Zhao

Ding Zhao

Alert button

Structured Two-Stage True-Time-Delay Array Codebook Design for Multi-User Data Communication

Nov 15, 2023
Aditya Wadaskar, Ding Zhao, Ibrahim Pehlivan, Danijela Cabric

Wideband millimeter-wave and terahertz (THz) systems can facilitate simultaneous data communication with multiple spatially separated users. It is desirable to orthogonalize users across sub-bands by deploying frequency-dependent beams with a sub-band-specific spatial response. True-Time-Delay (TTD) antenna arrays are a promising wideband architecture to implement sub-band-specific dispersion of beams across space using a single radio frequency (RF) chain. This paper proposes a structured design of analog TTD codebooks to generate beams that exhibit quantized sub-band-to-angle mapping. We introduce a structured Staircase TTD codebook and analyze the frequency-spatial behaviour of the resulting beam patterns. We develop the closed-form two-stage design of the proposed codebook to achieve the desired sub-band-specific beams and evaluate their performance in multi-user communication networks.

Viaarxiv icon

Safety-aware Causal Representation for Trustworthy Reinforcement Learning in Autonomous Driving

Oct 31, 2023
Haohong Lin, Wenhao Ding, Zuxin Liu, Yaru Niu, Jiacheng Zhu, Yuming Niu, Ding Zhao

In the domain of autonomous driving, the Learning from Demonstration (LfD) paradigm has exhibited notable efficacy in addressing sequential decision-making problems. However, consistently achieving safety in varying traffic contexts, especially in safety-critical scenarios, poses a significant challenge due to the long-tailed and unforeseen scenarios absent from offline datasets. In this paper, we introduce the saFety-aware strUctured Scenario representatION (FUSION), a pioneering methodology conceived to facilitate the learning of an adaptive end-to-end driving policy by leveraging structured scenario information. FUSION capitalizes on the causal relationships between decomposed reward, cost, state, and action space, constructing a framework for structured sequential reasoning under dynamic traffic environments. We conduct rigorous evaluations in two typical real-world settings of distribution shift in autonomous vehicles, demonstrating the good balance between safety cost and utility reward of FUSION compared to contemporary state-of-the-art safety-aware LfD baselines. Empirical evidence under diverse driving scenarios attests that FUSION significantly enhances the safety and generalizability of autonomous driving agents, even in the face of challenging and unseen environments. Furthermore, our ablation studies reveal noticeable improvements in the integration of causal representation into the safe offline RL problem.

Viaarxiv icon

Creative Robot Tool Use with Large Language Models

Oct 19, 2023
Mengdi Xu, Peide Huang, Wenhao Yu, Shiqi Liu, Xilun Zhang, Yaru Niu, Tingnan Zhang, Fei Xia, Jie Tan, Ding Zhao

Tool use is a hallmark of advanced intelligence, exemplified in both animal behavior and robotic capabilities. This paper investigates the feasibility of imbuing robots with the ability to creatively use tools in tasks that involve implicit physical constraints and long-term planning. Leveraging Large Language Models (LLMs), we develop RoboTool, a system that accepts natural language instructions and outputs executable code for controlling robots in both simulated and real-world environments. RoboTool incorporates four pivotal components: (i) an "Analyzer" that interprets natural language to discern key task-related concepts, (ii) a "Planner" that generates comprehensive strategies based on the language input and key concepts, (iii) a "Calculator" that computes parameters for each skill, and (iv) a "Coder" that translates these plans into executable Python code. Our results show that RoboTool can not only comprehend explicit or implicit physical constraints and environmental factors but also demonstrate creative tool use. Unlike traditional Task and Motion Planning (TAMP) methods that rely on explicit optimization, our LLM-based system offers a more flexible, efficient, and user-friendly solution for complex robotics tasks. Through extensive experiments, we validate that RoboTool is proficient in handling tasks that would otherwise be infeasible without the creative use of tools, thereby expanding the capabilities of robotic systems. Demos are available on our project page: https://creative-robotool.github.io/.

* 19 pages, 14 figures, 2 tables 
Viaarxiv icon

Reinforcement Learning in a Safety-Embedded MDP with Trajectory Optimization

Oct 10, 2023
Fan Yang, Wenxuan Zhou, Zuxin Liu, Ding Zhao, David Held

Figure 1 for Reinforcement Learning in a Safety-Embedded MDP with Trajectory Optimization
Figure 2 for Reinforcement Learning in a Safety-Embedded MDP with Trajectory Optimization
Figure 3 for Reinforcement Learning in a Safety-Embedded MDP with Trajectory Optimization
Figure 4 for Reinforcement Learning in a Safety-Embedded MDP with Trajectory Optimization

Safe Reinforcement Learning (RL) plays an important role in applying RL algorithms to safety-critical real-world applications, addressing the trade-off between maximizing rewards and adhering to safety constraints. This work introduces a novel approach that combines RL with trajectory optimization to manage this trade-off effectively. Our approach embeds safety constraints within the action space of a modified Markov Decision Process (MDP). The RL agent produces a sequence of actions that are transformed into safe trajectories by a trajectory optimizer, thereby effectively ensuring safety and increasing training stability. This novel approach excels in its performance on challenging Safety Gym tasks, achieving significantly higher rewards and near-zero safety violations during inference. The method's real-world applicability is demonstrated through a safe and effective deployment in a real robot task of box-pushing around obstacles.

Viaarxiv icon

TAIL: Task-specific Adapters for Imitation Learning with Large Pretrained Models

Oct 09, 2023
Zuxin Liu, Jesse Zhang, Kavosh Asadi, Yao Liu, Ding Zhao, Shoham Sabach, Rasool Fakoor

Figure 1 for TAIL: Task-specific Adapters for Imitation Learning with Large Pretrained Models
Figure 2 for TAIL: Task-specific Adapters for Imitation Learning with Large Pretrained Models
Figure 3 for TAIL: Task-specific Adapters for Imitation Learning with Large Pretrained Models
Figure 4 for TAIL: Task-specific Adapters for Imitation Learning with Large Pretrained Models

The full potential of large pretrained models remains largely untapped in control domains like robotics. This is mainly because of the scarcity of data and the computational challenges associated with training or fine-tuning these large models for such applications. Prior work mainly emphasizes effective pretraining of large models for decision-making, with little exploration into how to perform data-efficient continual adaptation of these models for new tasks. Recognizing these constraints, we introduce TAIL (Task-specific Adapters for Imitation Learning), a framework for efficient adaptation to new control tasks. Inspired by recent advancements in parameter-efficient fine-tuning in language domains, we explore efficient fine-tuning techniques -- e.g., Bottleneck Adapters, P-Tuning, and Low-Rank Adaptation (LoRA) -- in TAIL to adapt large pretrained models for new tasks with limited demonstration data. Our extensive experiments in large-scale language-conditioned manipulation tasks comparing prevalent parameter-efficient fine-tuning techniques and adaptation baselines suggest that TAIL with LoRA can achieve the best post-adaptation performance with only 1\% of the trainable parameters of full fine-tuning, while avoiding catastrophic forgetting and preserving adaptation plasticity in continual learning settings.

* 21 pages, 8 figures, 8 tables 
Viaarxiv icon

Influence of Camera-LiDAR Configuration on 3D Object Detection for Autonomous Driving

Oct 08, 2023
Ye Li, Hanjiang Hu, Zuxin Liu, Ding Zhao

Figure 1 for Influence of Camera-LiDAR Configuration on 3D Object Detection for Autonomous Driving
Figure 2 for Influence of Camera-LiDAR Configuration on 3D Object Detection for Autonomous Driving
Figure 3 for Influence of Camera-LiDAR Configuration on 3D Object Detection for Autonomous Driving
Figure 4 for Influence of Camera-LiDAR Configuration on 3D Object Detection for Autonomous Driving

Cameras and LiDARs are both important sensors for autonomous driving, playing critical roles for 3D object detection. Camera-LiDAR Fusion has been a prevalent solution for robust and accurate autonomous driving perception. In contrast to the vast majority of existing arts that focus on how to improve the performance of 3D target detection through cross-modal schemes, deep learning algorithms, and training tricks, we devote attention to the impact of sensor configurations on the performance of learning-based methods. To achieve this, we propose a unified information-theoretic surrogate metric for camera and LiDAR evaluation based on the proposed sensor perception model. We also design an accelerated high-quality framework for data acquisition, model training, and performance evaluation that functions with the CARLA simulator. To show the correlation between detection performance and our surrogate metrics, We conduct experiments using several camera-LiDAR placements and parameters inspired by self-driving companies and research institutions. Extensive experimental results of representative algorithms on NuScenes dataset validate the effectiveness of our surrogate metric, demonstrating that sensor configurations significantly impact point-cloud-image fusion based detection models, which contribute up to 30% discrepancy in terms of average precision.

Viaarxiv icon

Guardians as You Fall: Active Mode Transition for Safe Falling

Oct 07, 2023
Yikai Wang, Mengdi Xu, Guanya Shi, Ding Zhao

Recent advancements in optimal control and reinforcement learning have enabled quadrupedal robots to perform various agile locomotion tasks over diverse terrains. During these agile motions, ensuring the stability and resiliency of the robot is a primary concern to prevent catastrophic falls and mitigate potential damages. Previous methods primarily focus on recovery policies after the robot falls. There is no active safe falling solution to the best of our knowledge. In this paper, we proposed Guardians as You Fall (GYF), a safe falling/tumbling and recovery framework that can actively tumble and recover to stable modes to reduce damage in highly dynamic scenarios. The key idea of GYF is to adaptively traverse different stable modes via active tumbling before the robot shifts to irrecoverable poses. Via comprehensive simulation and real-world experiments, we show that GYF significantly reduces the maximum acceleration and jerk of the robot base compared to the baselines. In particular, GYF reduces the maximum acceleration and jerk by 20%~73% in different scenarios in simulation and real-world experiments. GYF offers a new perspective on safe falling and recovery in locomotion tasks, potentially enabling much more aggressive explorations of existing agile locomotion skills.

* website: https://sites.google.com/view/guardians-as-you-fall/ 
Viaarxiv icon

Constraint-Conditioned Policy Optimization for Versatile Safe Reinforcement Learning

Oct 05, 2023
Yihang Yao, Zuxin Liu, Zhepeng Cen, Jiacheng Zhu, Wenhao Yu, Tingnan Zhang, Ding Zhao

Safe reinforcement learning (RL) focuses on training reward-maximizing agents subject to pre-defined safety constraints. Yet, learning versatile safe policies that can adapt to varying safety constraint requirements during deployment without retraining remains a largely unexplored and challenging area. In this work, we formulate the versatile safe RL problem and consider two primary requirements: training efficiency and zero-shot adaptation capability. To address them, we introduce the Conditioned Constrained Policy Optimization (CCPO) framework, consisting of two key modules: (1) Versatile Value Estimation (VVE) for approximating value functions under unseen threshold conditions, and (2) Conditioned Variational Inference (CVI) for encoding arbitrary constraint thresholds during policy optimization. Our extensive experiments demonstrate that CCPO outperforms the baselines in terms of safety and task performance while preserving zero-shot adaptation capabilities to different constraint thresholds data-efficiently. This makes our approach suitable for real-world dynamic applications.

Viaarxiv icon

COMPOSER: Scalable and Robust Modular Policies for Snake Robots

Oct 02, 2023
Yuyou Zhang, Yaru Niu, Xingyu Liu, Ding Zhao

Snake robots have showcased remarkable compliance and adaptability in their interaction with environments, mirroring the traits of their natural counterparts. While their hyper-redundant and high-dimensional characteristics add to this adaptability, they also pose great challenges to robot control. Instead of perceiving the hyper-redundancy and flexibility of snake robots as mere challenges, there lies an unexplored potential in leveraging these traits to enhance robustness and generalizability at the control policy level. We seek to develop a control policy that effectively breaks down the high dimensionality of snake robots while harnessing their redundancy. In this work, we consider the snake robot as a modular robot and formulate the control of the snake robot as a cooperative Multi-Agent Reinforcement Learning (MARL) problem. Each segment of the snake robot functions as an individual agent. Specifically, we incorporate a self-attention mechanism to enhance the cooperative behavior between agents. A high-level imagination policy is proposed to provide additional rewards to guide the low-level control policy. We validate the proposed method COMPOSER with five snake robot tasks, including goal reaching, wall climbing, shape formation, tube crossing, and block pushing. COMPOSER achieves the highest success rate across all tasks when compared to a centralized baseline and four modular policy baselines. Additionally, we show enhanced robustness against module corruption and significantly superior zero-shot generalizability in our proposed method. The videos of this work are available on our project page: https://sites.google.com/view/composer-snake/.

* 7 pages, 5 figures 
Viaarxiv icon