Wuhan University
Abstract:In the universal quest to optimize machine-learning classifiers, three factors -- model architecture, dataset size, and class balance -- have been shown to influence test-time performance but do not fully account for it. Previously, evidence was presented for an additional factor that can be referred to as dataset quality, but it was unclear whether this was actually a joint property of the dataset and the model architecture, or an intrinsic property of the dataset itself. If quality is truly dataset-intrinsic and independent of model architecture, dataset size, and class balance, then the same datasets should perform better (or worse) regardless of these other factors. To test this hypothesis, here we create thousands of datasets, each controlled for size and class balance, and use them to train classifiers with a wide range of architectures, from random forests and support-vector machines to deep networks. We find that classifier performance correlates strongly by subset across architectures ($R^2=0.79$), supporting quality as an intrinsic property of datasets independent of dataset size and class balance and of model architecture. Digging deeper, we find that dataset quality appears to be an emergent property of something more fundamental: the quality of datasets' constituent classes. Thus, quality joins size, class balance, and model architecture as an independent correlate of performance and a separate target for optimizing machine-learning-based classification.
Abstract:Training and evaluating autonomous driving algorithms requires a diverse range of scenarios. However, most available datasets predominantly consist of normal driving behaviors demonstrated by human drivers, resulting in a limited number of safety-critical cases. This imbalance, often referred to as a long-tail distribution, restricts the ability of driving algorithms to learn from crucial scenarios involving risk or failure, scenarios that are essential for humans to develop driving skills efficiently. To generate such scenarios, we utilize Multi-modal Large Language Models to convert crash reports of accidents into a structured scenario format, which can be directly executed within simulations. Specifically, we introduce CrashAgent, a multi-agent framework designed to interpret multi-modal real-world traffic crash reports for the generation of both road layouts and the behaviors of the ego vehicle and surrounding traffic participants. We comprehensively evaluate the generated crash scenarios from multiple perspectives, including the accuracy of layout reconstruction, collision rate, and diversity. The resulting high-quality and large-scale crash dataset will be publicly available to support the development of safe driving algorithms in handling safety-critical situations.
Abstract:Despite advances in hand-object interaction modeling, generating realistic dexterous manipulation data for robotic hands remains a challenge. Retargeting methods often suffer from low accuracy and fail to account for hand-object interactions, leading to artifacts like interpenetration. Generative methods, lacking human hand priors, produce limited and unnatural poses. We propose a data transformation pipeline that combines human hand and object data from multiple sources for high-precision retargeting. Our approach uses a differential loss constraint to ensure temporal consistency and generates contact maps to refine hand-object interactions. Experiments show our method significantly improves pose accuracy, naturalness, and diversity, providing a robust solution for hand-object interaction modeling.
Abstract:The emergence of medical generalist foundation models has revolutionized conventional task-specific model development paradigms, aiming to better handle multiple tasks through joint training on large-scale medical datasets. However, recent advances prioritize simple data scaling or architectural component enhancement, while neglecting to re-examine multi-task learning from a data-centric perspective. Critically, simply aggregating existing data resources leads to decentralized image-task alignment, which fails to cultivate comprehensive image understanding or align with clinical needs for multi-dimensional image interpretation. In this paper, we introduce the image-centric multi-annotation X-ray dataset (IMAX), the first attempt to enhance the multi-task learning capabilities of medical multi-modal large language models (MLLMs) from the data construction level. To be specific, IMAX is featured from the following attributes: 1) High-quality data curation. A comprehensive collection of more than 354K entries applicable to seven different medical tasks. 2) Image-centric dense annotation. Each X-ray image is associated with an average of 4.10 tasks and 7.46 training entries, ensuring multi-task representation richness per image. Compared to the general decentralized multi-annotation X-ray dataset (DMAX), IMAX consistently demonstrates significant multi-task average performance gains ranging from 3.20% to 21.05% across seven open-source state-of-the-art medical MLLMs. Moreover, we investigate differences in statistical patterns exhibited by IMAX and DMAX training processes, exploring potential correlations between optimization dynamics and multi-task performance. Finally, leveraging the core concept of IMAX data construction, we propose an optimized DMAX-based training strategy to alleviate the dilemma of obtaining high-quality IMAX data in practical scenarios.
Abstract:Medical image analysis is a fundamental component. As deep learning progresses, the focus has shifted from single-task applications, such as classification and segmentation, to more complex multimodal tasks, including medical visual question answering and report generation. Traditional shallow and task-specific models are increasingly limited in addressing the complexity and scalability required in clinical practice. The emergence of large language models (LLMs) has driven the development of medical Large Vision-Language Models (LVLMs), offering a unified solution for diverse vision-language tasks. In this study, we investigate various architectural designs for medical LVLMs based on the widely adopted LLaVA framework, which follows an encoder-connector-LLM paradigm. We construct two distinct models targeting 2D and 3D modalities, respectively. These models are designed to support both general-purpose medical tasks and domain-specific fine-tuning, thereby serving as effective foundation models. To facilitate reproducibility and further research, we develop a modular and extensible codebase, MedM-VL, and release two LVLM variants: MedM-VL-2D for 2D medical image analysis and MedM-VL-CT-Chest for 3D CT-based applications. The code and models are available at: https://github.com/MSIIP/MedM-VL
Abstract:Large Language Models (LLMs) are vulnerable to jailbreak attacks that exploit weaknesses in traditional safety alignment, which often relies on rigid refusal heuristics or representation engineering to block harmful outputs. While they are effective for direct adversarial attacks, they fall short of broader safety challenges requiring nuanced, context-aware decision-making. To address this, we propose Reasoning-enhanced Finetuning for interpretable LLM Safety (Rational), a novel framework that trains models to engage in explicit safe reasoning before response. Fine-tuned models leverage the extensive pretraining knowledge in self-generated reasoning to bootstrap their own safety through structured reasoning, internalizing context-sensitive decision-making. Our findings suggest that safety extends beyond refusal, requiring context awareness for more robust, interpretable, and adaptive responses. Reasoning is not only a core capability of LLMs but also a fundamental mechanism for LLM safety. Rational employs reasoning-enhanced fine-tuning, allowing it to reject harmful prompts while providing meaningful and context-aware responses in complex scenarios.
Abstract:This paper studies a Conformal Prediction (CP) methodology for building prediction intervals in a regression setting, given only deterministic lower and upper bounds on the target variable. It proposes a new CP mechanism (CPUL) that goes beyond post-processing by adopting a model selection approach over multiple nested interval construction methods. Paradoxically, many well-established CP methods, including CPUL, may fail to provide adequate coverage in regions where the bounds are tight. To remedy this limitation, the paper proposes an optimal thresholding mechanism, OMLT, that adjusts CPUL intervals in tight regions with undercoverage. The combined CPUL-OMLT is validated on large-scale learning tasks where the goal is to bound the optimal value of a parametric optimization problem. The experimental results demonstrate substantial improvements over baseline methods across various datasets.
Abstract:Large Language Models (LLMs) have demonstrated strong reasoning capabilities across various tasks. However, even minor variations in query phrasing, despite preserving the underlying semantic meaning, can significantly affect their performance. To address this, we focus on enhancing LLMs' awareness of symmetry in query variations and propose syMmetry-ENhanceD (MEND) Data Augmentation, a data-centric approach that improves the model's ability to extract useful information from context. Unlike existing methods that emphasize reasoning chain augmentation, our approach improves model robustness at the knowledge extraction stage through query augmentations, enabling more data-efficient training and stronger generalization to Out-of-Distribution (OOD) settings. Extensive experiments on both logical and arithmetic reasoning tasks show that MEND enhances reasoning performance across diverse query variations, providing new insight into improving LLM robustness through structured dataset curation.
Abstract:With the rapid advancements in multi-modal large language models (MLLMs), connectors play a pivotal role in bridging diverse modalities and enhancing model performance. However, the design and evolution of connectors have not been comprehensively analyzed, leaving gaps in understanding how these components function and hindering the development of more powerful connectors. In this survey, we systematically review the current progress of connectors in MLLMs and present a structured taxonomy that categorizes connectors into atomic operations (mapping, compression, mixture of experts) and holistic designs (multi-layer, multi-encoder, multi-modal scenarios), highlighting their technical contributions and advancements. Furthermore, we discuss several promising research frontiers and challenges, including high-resolution input, dynamic compression, guide information selection, combination strategy, and interpretability. This survey is intended to serve as a foundational reference and a clear roadmap for researchers, providing valuable insights into the design and optimization of next-generation connectors to enhance the performance and adaptability of MLLMs.
Abstract:Generative models hold great potential, but only if one can trust the evaluation of the data they generate. We show that many commonly used quality scores for comparing two-dimensional distributions of synthetic vs. ground-truth data give better results than they should, a phenomenon we call the "grade inflation problem." We show that the correlation score, Jaccard score, earth-mover's score, and Kullback-Leibler (relative-entropy) score all suffer grade inflation. We propose that any score that values all datapoints equally, as these do, will also exhibit grade inflation; we refer to such scores as "equipoint" scores. We introduce the concept of "equidensity" scores, and present the Eden score, to our knowledge the first example of such a score. We found that Eden avoids grade inflation and agrees better with human perception of goodness-of-fit than the equipoint scores above. We propose that any reasonable equidensity score will avoid grade inflation. We identify a connection between equidensity scores and R\'enyi entropy of negative order. We conclude that equidensity scores are likely to outperform equipoint scores for generative models, and for comparing low-dimensional distributions more generally.