Abstract:Contact often occurs without macroscopic surface deformation, such as during interaction with liquids, semi-liquids, or ultra-soft materials. Most existing tactile sensors rely on deformation to infer contact, making such light-contact interactions difficult to perceive robustly. To address this, we present LightTact, a visual-tactile fingertip sensor that makes contact directly visible via a deformation-independent, optics-based principle. LightTact uses an ambient-blocking optical configuration that suppresses both external light and internal illumination at non-contact regions, while transmitting only the diffuse light generated at true contacts. As a result, LightTact produces high-contrast raw images in which non-contact pixels remain near-black (mean gray value < 3) and contact pixels preserve the natural appearance of the contacting surface. Built on this, LightTact achieves accurate pixel-level contact segmentation that is robust to material properties, contact force, surface appearance, and environmental lighting. We further integrate LightTact on a robotic arm and demonstrate manipulation behaviors driven by extremely light contact, including water spreading, facial-cream dipping, and thin-film interaction. Finally, we show that LightTact's spatially aligned visual-tactile images can be directly interpreted by existing vision-language models, enabling resistor value reasoning for robotic sorting.
Abstract:Black-box optimization often relies on evolutionary and swarm algorithms whose performance is highly problem dependent. We view an optimizer as a short program over a small vocabulary of search operators and learn this operator program separately for each problem instance. We instantiate this idea in Operator-Programmed Algorithms (OPAL), a landscape-aware framework for continuous black-box optimization that uses a small design budget with a standard differential evolution baseline to probe the landscape, builds a $k$-nearest neighbor graph over sampled points, and encodes this trajectory with a graph neural network. A meta-learner then maps the resulting representation to a phase-wise schedule of exploration, restart, and local search operators. On the CEC~2017 test suite, a single meta-trained OPAL policy is statistically competitive with state-of-the-art adaptive differential evolution variants and achieves significant improvements over simpler baselines under nonparametric tests. Ablation studies on CEC~2017 justify the choices for the design phase, the trajectory graph, and the operator-program representation, while the meta-components add only modest wall-clock overhead. Overall, the results indicate that operator-programmed, landscape-aware per-instance design is a practical way forward beyond ad hoc metaphor-based algorithms in black-box optimization.
Abstract:With the widespread adoption of unmanned aerial vehicles (UAV), effective path planning has become increasingly important. Although traditional search methods have been extensively applied, metaheuristic algorithms have gained popularity due to their efficiency and problem-specific heuristics. However, challenges such as premature convergence and lack of solution diversity still hinder their performance in complex scenarios. To address these issues, this paper proposes an Enhanced Multi-Strategy Dwarf Mongoose Optimization (EDMO) algorithm, tailored for three-dimensional UAV trajectory planning in dynamic and obstacle-rich environments. EDMO integrates three novel strategies: (1) a Dynamic Quantum Tunneling Optimization Strategy (DQTOS) to enable particles to probabilistically escape local optima; (2) a Bio-phototactic Dynamic Focusing Search Strategy (BDFSS) inspired by microbial phototaxis for adaptive local refinement; and (3) an Orthogonal Lens Opposition-Based Learning (OLOBL) strategy to enhance global exploration through structured dimensional recombination. EDMO is benchmarked on 39 standard test functions from CEC2017 and CEC2020, outperforming 14 advanced algorithms in convergence speed, robustness, and optimization accuracy. Furthermore, real-world validations on UAV three-dimensional path planning and three engineering design tasks confirm its practical applicability and effectiveness in field robotics missions requiring intelligent, adaptive, and time-efficient planning.
Abstract:Quadrupedal robots have demonstrated remarkable agility and robustness in traversing complex terrains. However, they remain limited in performing object interactions that require sustained contact. In this work, we present LocoTouch, a system that equips quadrupedal robots with tactile sensing to address a challenging task in this category: long-distance transport of unsecured cylindrical objects, which typically requires custom mounting mechanisms to maintain stability. For efficient large-area tactile sensing, we design a high-density distributed tactile sensor array that covers the entire back of the robot. To effectively leverage tactile feedback for locomotion control, we develop a simulation environment with high-fidelity tactile signals, and train tactile-aware transport policies using a two-stage learning pipeline. Furthermore, we design a novel reward function to promote stable, symmetric, and frequency-adaptive locomotion gaits. After training in simulation, LocoTouch transfers zero-shot to the real world, reliably balancing and transporting a wide range of unsecured, cylindrical everyday objects with broadly varying sizes and weights. Thanks to the responsiveness of the tactile sensor and the adaptive gait reward, LocoTouch can robustly balance objects with slippery surfaces over long distances, or even under severe external perturbations.




Abstract:To learn the optimal similarity function between probe and gallery images in Person re-identification, effective deep metric learning methods have been extensively explored to obtain discriminative feature embedding. However, existing metric loss like triplet loss and its variants always emphasize pair-wise relations but ignore the distribution context in feature space, leading to inconsistency and sub-optimal. In fact, the similarity of one pair not only decides the match of this pair, but also has potential impacts on other sample pairs. In this paper, we propose a novel Distribution Context Aware (DCA) loss based on triplet loss to combine both numerical similarity and relation similarity in feature space for better clustering. Extensive experiments on three benchmarks including Market-1501, DukeMTMC-reID and MSMT17, evidence the favorable performance of our method against the corresponding baseline and other state-of-the-art methods.