Abstract:Pose-guided video generation refers to controlling the motion of subjects in generated video through a sequence of poses. It enables precise control over subject motion and has important applications in animation. However, current pose-guided video generation methods are limited to accepting only human poses as input, thus generalizing poorly to pose of other subjects. To address this issue, we propose PoseAnything, the first universal pose-guided video generation framework capable of handling both human and non-human characters, supporting arbitrary skeletal inputs. To enhance consistency preservation during motion, we introduce Part-aware Temporal Coherence Module, which divides the subject into different parts, establishes part correspondences, and computes cross-attention between corresponding parts across frames to achieve fine-grained part-level consistency. Additionally, we propose Subject and Camera Motion Decoupled CFG, a novel guidance strategy that, for the first time, enables independent camera movement control in pose-guided video generation, by separately injecting subject and camera motion control information into the positive and negative anchors of CFG. Furthermore, we present XPose, a high-quality public dataset containing 50,000 non-human pose-video pairs, along with an automated pipeline for annotation and filtering. Extensive experiments demonstrate that Pose-Anything significantly outperforms state-of-the-art methods in both effectiveness and generalization.
Abstract:Autoregressive models have emerged as a powerful paradigm for visual content creation, but often overlook the intrinsic structural properties of visual data. Our prior work, IAR, initiated a direction to address this by reorganizing the visual codebook based on embedding similarity, thereby improving generation robustness. However, it is constrained by the rigidity of pre-trained codebooks and the inaccuracies of hard, uniform clustering. To overcome these limitations, we propose IAR2, an advanced autoregressive framework that enables a hierarchical semantic-detail synthesis process. At the core of IAR2 is a novel Semantic-Detail Associated Dual Codebook, which decouples image representations into a semantic codebook for global semantic information and a detail codebook for fine-grained refinements. It expands the quantization capacity from a linear to a polynomial scale, significantly enhancing expressiveness. To accommodate this dual representation, we propose a Semantic-Detail Autoregressive Prediction scheme coupled with a Local-Context Enhanced Autoregressive Head, which performs hierarchical prediction-first the semantic token, then the detail token-while leveraging a local context window to enhance spatial coherence. Furthermore, for conditional generation, we introduce a Progressive Attention-Guided Adaptive CFG mechanism that dynamically modulates the guidance scale for each token based on its relevance to the condition and its temporal position in the generation sequence, improving conditional alignment without sacrificing realism. Extensive experiments demonstrate that IAR2 sets a new state-of-the-art for autoregressive image generation, achieving a FID of 1.50 on ImageNet. Our model not only surpasses previous methods in performance but also demonstrates superior computational efficiency, highlighting the effectiveness of our structured, coarse-to-fine generation strategy.




Abstract:The explosive growth of generative video models has amplified the demand for reliable copyright preservation of AI-generated content. Despite its popularity in image synthesis, invisible generative watermarking remains largely underexplored in video generation. To address this gap, we propose Safe-Sora, the first framework to embed graphical watermarks directly into the video generation process. Motivated by the observation that watermarking performance is closely tied to the visual similarity between the watermark and cover content, we introduce a hierarchical coarse-to-fine adaptive matching mechanism. Specifically, the watermark image is divided into patches, each assigned to the most visually similar video frame, and further localized to the optimal spatial region for seamless embedding. To enable spatiotemporal fusion of watermark patches across video frames, we develop a 3D wavelet transform-enhanced Mamba architecture with a novel spatiotemporal local scanning strategy, effectively modeling long-range dependencies during watermark embedding and retrieval. To the best of our knowledge, this is the first attempt to apply state space models to watermarking, opening new avenues for efficient and robust watermark protection. Extensive experiments demonstrate that Safe-Sora achieves state-of-the-art performance in terms of video quality, watermark fidelity, and robustness, which is largely attributed to our proposals. We will release our code upon publication.
Abstract:Recently, text-guided image editing has achieved significant success. However, existing methods can only apply simple textures like wood or gold when changing the texture of an object. Complex textures such as cloud or fire pose a challenge. This limitation stems from that the target prompt needs to contain both the input image content and <texture>, restricting the texture representation. In this paper, we propose TextureDiffusion, a tuning-free image editing method applied to various texture transfer. Initially, the target prompt is directly set to "<texture>", making the texture disentangled from the input image content to enhance texture representation. Subsequently, query features in self-attention and features in residual blocks are utilized to preserve the structure of the input image. Finally, to maintain the background, we introduce an edit localization technique which blends the self-attention results and the intermediate latents. Comprehensive experiments demonstrate that TextureDiffusion can harmoniously transfer various textures with excellent structure and background preservation.