Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"photo style transfer": models, code, and papers

SurReal: enhancing Surgical simulation Realism using style transfer

Nov 07, 2018
Imanol Luengo, Evangello Flouty, Petros Giataganas, Piyamate Wisanuvej, Jean Nehme, Danail Stoyanov

Surgical simulation is an increasingly important element of surgical education. Using simulation can be a means to address some of the significant challenges in developing surgical skills with limited time and resources. The photo-realistic fidelity of simulations is a key feature that can improve the experience and transfer ratio of trainees. In this paper, we demonstrate how we can enhance the visual fidelity of existing surgical simulation by performing style transfer of multi-class labels from real surgical video onto synthetic content. We demonstrate our approach on simulations of cataract surgery using real data labels from an existing public dataset. Our results highlight the feasibility of the approach and also the powerful possibility to extend this technique to incorporate additional temporal constraints and to different applications.

* BMVC 2018 

DCT-Net: Domain-Calibrated Translation for Portrait Stylization

Jul 06, 2022
Yifang Men, Yuan Yao, Miaomiao Cui, Zhouhui Lian, Xuansong Xie

This paper introduces DCT-Net, a novel image translation architecture for few-shot portrait stylization. Given limited style exemplars ($\sim$100), the new architecture can produce high-quality style transfer results with advanced ability to synthesize high-fidelity contents and strong generality to handle complicated scenes (e.g., occlusions and accessories). Moreover, it enables full-body image translation via one elegant evaluation network trained by partial observations (i.e., stylized heads). Few-shot learning based style transfer is challenging since the learned model can easily become overfitted in the target domain, due to the biased distribution formed by only a few training examples. This paper aims to handle the challenge by adopting the key idea of "calibration first, translation later" and exploring the augmented global structure with locally-focused translation. Specifically, the proposed DCT-Net consists of three modules: a content adapter borrowing the powerful prior from source photos to calibrate the content distribution of target samples; a geometry expansion module using affine transformations to release spatially semantic constraints; and a texture translation module leveraging samples produced by the calibrated distribution to learn a fine-grained conversion. Experimental results demonstrate the proposed method's superiority over the state of the art in head stylization and its effectiveness on full image translation with adaptive deformations.

* Accepted by SIGGRAPH 2022 (TOG). Project Page: , Code: 

Depth-aware Neural Style Transfer using Instance Normalization

Mar 17, 2022
Eleftherios Ioannou, Steve Maddock

Neural Style Transfer (NST) is concerned with the artistic stylization of visual media. It can be described as the process of transferring the style of an artistic image onto an ordinary photograph. Recently, a number of studies have considered the enhancement of the depth-preserving capabilities of the NST algorithms to address the undesired effects that occur when the input content images include numerous objects at various depths. Our approach uses a deep residual convolutional network with instance normalization layers that utilizes an advanced depth prediction network to integrate depth preservation as an additional loss function to content and style. We demonstrate results that are effective in retaining the depth and global structure of content images. Three different evaluation processes show that our system is capable of preserving the structure of the stylized results while exhibiting style-capture capabilities and aesthetic qualities comparable or superior to state-of-the-art methods.

* 16 pages, 7 figures, submitted to European Conference on Computer Vision (ECCV) 2022 

Spatial Content Alignment For Pose Transfer

Mar 31, 2021
Wing-Yin Yu, Lai-Man Po, Yuzhi Zhao, Jingjing Xiong, Kin-Wai Lau

Due to unreliable geometric matching and content misalignment, most conventional pose transfer algorithms fail to generate fine-trained person images. In this paper, we propose a novel framework Spatial Content Alignment GAN (SCAGAN) which aims to enhance the content consistency of garment textures and the details of human characteristics. We first alleviate the spatial misalignment by transferring the edge content to the target pose in advance. Secondly, we introduce a new Content-Style DeBlk which can progressively synthesize photo-realistic person images based on the appearance features of the source image, the target pose heatmap and the prior transferred content in edge domain. We compare the proposed framework with several state-of-the-art methods to show its superiority in quantitative and qualitative analysis. Moreover, detailed ablation study results demonstrate the efficacy of our contributions. Codes are publicly available at

* IEEE International Conference on Multimedia and Expo (ICME) 2021 Oral 

Artist Style Transfer Via Quadratic Potential

Mar 05, 2019
Rahul Bhalley, Jianlin Su

In this paper we address the problem of artist style transfer where the painting style of a given artist is applied on a real world photograph. We train our neural networks in adversarial setting via recently introduced quadratic potential divergence for stable learning process. To further improve the quality of generated artist stylized images we also integrate some of the recently introduced deep learning techniques in our method. To our best knowledge this is the first attempt towards artist style transfer via quadratic potential divergence. We provide some stylized image samples in the supplementary material. The source code for experimentation was written in PyTorch and is available online in my GitHub repository.

* 8 pages, 3 figures, uses nips_2018.sty, renamed the network to CycleGAN-QP for maintaining consistency with work 

WarpGAN: Automatic Caricature Generation

Nov 28, 2018
Yichun Shi, Debayan Deb, Anil K. Jain

We propose, WarpGAN, a fully automatic network that can generate caricatures given an input face photo. Besides transferring rich texture styles, WarpGAN learns to automatically predict a set of control points that can warp the photo into a caricature, while preserving identity. We introduce an identity-preserving adversarial loss that aids the discriminator to distinguish between different subjects. Moreover, WarpGAN allows customization of the generated caricatures by controlling the exaggeration extent and the visual styles. Experimental results on a public domain dataset, WebCaricature, show that WarpGAN is capable of generating a diverse set of caricatures while preserving the identities. Five caricature experts suggest that caricatures generated by WarpGAN are visually similar to hand-drawn ones and only prominent facial features are exaggerated.


Manipulating Attributes of Natural Scenes via Hallucination

Aug 22, 2018
Levent Karacan, Zeynep Akata, Aykut Erdem, Erkut Erdem

In this study, we explore building a two-stage framework for enabling users to directly manipulate high-level attributes of a natural scene. The key to our approach is a deep generative network which can hallucinate images of a scene as if they were taken at a different season (e.g. during winter), weather condition (e.g. in a cloudy day) or time of the day (e.g. at sunset). Once the scene is hallucinated with the given attributes, the corresponding look is then transferred to the input image while preserving the semantic details intact, giving a photo-realistic manipulation result. As the proposed framework hallucinates what the scene will look like, it does not require any reference style image as commonly utilized in most of the appearance or style transfer approaches. Moreover, it allows to simultaneously manipulate a given scene according to a diverse set of transient attributes within a single model, eliminating the need of training multiple networks per each translation task. Our comprehensive set of qualitative and quantitative results demonstrate the effectiveness of our approach against the competing methods.


SinIR: Efficient General Image Manipulation with Single Image Reconstruction

Jun 14, 2021
Jihyeong Yoo, Qifeng Chen

We propose SinIR, an efficient reconstruction-based framework trained on a single natural image for general image manipulation, including super-resolution, editing, harmonization, paint-to-image, photo-realistic style transfer, and artistic style transfer. We train our model on a single image with cascaded multi-scale learning, where each network at each scale is responsible for image reconstruction. This reconstruction objective greatly reduces the complexity and running time of training, compared to the GAN objective. However, the reconstruction objective also exacerbates the output quality. Therefore, to solve this problem, we further utilize simple random pixel shuffling, which also gives control over manipulation, inspired by the Denoising Autoencoder. With quantitative evaluation, we show that SinIR has competitive performance on various image manipulation tasks. Moreover, with a much simpler training objective (i.e., reconstruction), SinIR is trained 33.5 times faster than SinGAN (for 500 X 500 images) that solves similar tasks. Our code is publicly available at

* Accepted to ICML 2021 

StyleFlow For Content-Fixed Image to Image Translation

Jul 05, 2022
Weichen Fan, Jinghuan Chen, Jiabin Ma, Jun Hou, Shuai Yi

Image-to-image (I2I) translation is a challenging topic in computer vision. We divide this problem into three tasks: strongly constrained translation, normally constrained translation, and weakly constrained translation. The constraint here indicates the extent to which the content or semantic information in the original image is preserved. Although previous approaches have achieved good performance in weakly constrained tasks, they failed to fully preserve the content in both strongly and normally constrained tasks, including photo-realism synthesis, style transfer, and colorization, etc. To achieve content-preserving transfer in strongly constrained and normally constrained tasks, we propose StyleFlow, a new I2I translation model that consists of normalizing flows and a novel Style-Aware Normalization (SAN) module. With the invertible network structure, StyleFlow first projects input images into deep feature space in the forward pass, while the backward pass utilizes the SAN module to perform content-fixed feature transformation and then projects back to image space. Our model supports both image-guided translation and multi-modal synthesis. We evaluate our model in several I2I translation benchmarks, and the results show that the proposed model has advantages over previous methods in both strongly constrained and normally constrained tasks.


Weakly-supervised Caricature Face Parsing through Domain Adaptation

May 13, 2019
Wenqing Chu, Wei-Chih Hung, Yi-Hsuan Tsai, Deng Cai, Ming-Hsuan Yang

A caricature is an artistic form of a person's picture in which certain striking characteristics are abstracted or exaggerated in order to create a humor or sarcasm effect. For numerous caricature related applications such as attribute recognition and caricature editing, face parsing is an essential pre-processing step that provides a complete facial structure understanding. However, current state-of-the-art face parsing methods require large amounts of labeled data on the pixel-level and such process for caricature is tedious and labor-intensive. For real photos, there are numerous labeled datasets for face parsing. Thus, we formulate caricature face parsing as a domain adaptation problem, where real photos play the role of the source domain, adapting to the target caricatures. Specifically, we first leverage a spatial transformer based network to enable shape domain shifts. A feed-forward style transfer network is then utilized to capture texture-level domain gaps. With these two steps, we synthesize face caricatures from real photos, and thus we can use parsing ground truths of the original photos to learn the parsing model. Experimental results on the synthetic and real caricatures demonstrate the effectiveness of the proposed domain adaptation algorithm. Code is available at: .

* Accepted in ICIP 2019, code and model are available at