Abstract:This paper introduces a novel solution to the manual control challenge for indoor blimps. The problem's complexity arises from the conflicting demands of executing human commands while maintaining stability through automatic control for underactuated robots. To tackle this challenge, we introduced an assisted piloting hybrid controller with a preemptive mechanism, that seamlessly switches between executing human commands and activating automatic stabilization control. Our algorithm ensures that the automatic stabilization controller operates within the time delay between human observation and perception, providing assistance to the driver in a way that remains imperceptible.
Abstract:Learning 3D scene representation from a single-view image is a long-standing fundamental problem in computer vision, with the inherent ambiguity in predicting contents unseen from the input view. Built on the recently proposed 3D Gaussian Splatting (3DGS), the Splatter Image method has made promising progress on fast single-image novel view synthesis via learning a single 3D Gaussian for each pixel based on the U-Net feature map of an input image. However, it has limited expressive power to represent occluded components that are not observable in the input view. To address this problem, this paper presents a Hierarchical Splatter Image method in which a pixel is worth more than one 3D Gaussians. Specifically, each pixel is represented by a parent 3D Gaussian and a small number of child 3D Gaussians. Parent 3D Gaussians are learned as done in the vanilla Splatter Image. Child 3D Gaussians are learned via a lightweight Multi-Layer Perceptron (MLP) which takes as input the projected image features of a parent 3D Gaussian and the embedding of a target camera view. Both parent and child 3D Gaussians are learned end-to-end in a stage-wise way. The joint condition of input image features from eyes of the parent Gaussians and the target camera position facilitates learning to allocate child Gaussians to ``see the unseen'', recovering the occluded details that are often missed by parent Gaussians. In experiments, the proposed method is tested on the ShapeNet-SRN and CO3D datasets with state-of-the-art performance obtained, especially showing promising capabilities of reconstructing occluded contents in the input view.
Abstract:Can we localize a robot in radiance fields only using monocular vision? This study presents NuRF, a nudged particle filter framework for 6-DoF robot visual localization in radiance fields. NuRF sets anchors in SE(3) to leverage visual place recognition, which provides image comparisons to guide the sampling process. This guidance could improve the convergence and robustness of particle filters for robot localization. Additionally, an adaptive scheme is designed to enhance the performance of NuRF, thus enabling both global visual localization and local pose tracking. Real-world experiments are conducted with comprehensive tests to demonstrate the effectiveness of NuRF. The results showcase the advantages of NuRF in terms of accuracy and efficiency, including comparisons with alternative approaches. Furthermore, we report our findings for future studies and advancements in robot navigation in radiance fields.
Abstract:We present Multi-View Attentive Contextualization (MvACon), a simple yet effective method for improving 2D-to-3D feature lifting in query-based multi-view 3D (MV3D) object detection. Despite remarkable progress witnessed in the field of query-based MV3D object detection, prior art often suffers from either the lack of exploiting high-resolution 2D features in dense attention-based lifting, due to high computational costs, or from insufficiently dense grounding of 3D queries to multi-scale 2D features in sparse attention-based lifting. Our proposed MvACon hits the two birds with one stone using a representationally dense yet computationally sparse attentive feature contextualization scheme that is agnostic to specific 2D-to-3D feature lifting approaches. In experiments, the proposed MvACon is thoroughly tested on the nuScenes benchmark, using both the BEVFormer and its recent 3D deformable attention (DFA3D) variant, as well as the PETR, showing consistent detection performance improvement, especially in enhancing performance in location, orientation, and velocity prediction. It is also tested on the Waymo-mini benchmark using BEVFormer with similar improvement. We qualitatively and quantitatively show that global cluster-based contexts effectively encode dense scene-level contexts for MV3D object detection. The promising results of our proposed MvACon reinforces the adage in computer vision -- ``(contextualized) feature matters".
Abstract:The adversarial vulnerability of Deep Neural Networks (DNNs) has been well-known and widely concerned, often under the context of learning top-$1$ attacks (e.g., fooling a DNN to classify a cat image as dog). This paper shows that the concern is much more serious by learning significantly more aggressive ordered top-$K$ clear-box~\footnote{ This is often referred to as white/black-box attacks in the literature. We choose to adopt neutral terminology, clear/opaque-box attacks in this paper, and omit the prefix clear-box for simplicity.} targeted attacks proposed in Adversarial Distillation. We propose a novel and rigorous quadratic programming (QP) method of learning ordered top-$K$ attacks with low computing cost, dubbed as \textbf{QuadAttac$K$}. Our QuadAttac$K$ directly solves the QP to satisfy the attack constraint in the feature embedding space (i.e., the input space to the final linear classifier), which thus exploits the semantics of the feature embedding space (i.e., the principle of class coherence). With the optimized feature embedding vector perturbation, it then computes the adversarial perturbation in the data space via the vanilla one-step back-propagation. In experiments, the proposed QuadAttac$K$ is tested in the ImageNet-1k classification using ResNet-50, DenseNet-121, and Vision Transformers (ViT-B and DEiT-S). It successfully pushes the boundary of successful ordered top-$K$ attacks from $K=10$ up to $K=20$ at a cheap budget ($1\times 60$) and further improves attack success rates for $K=5$ for all tested models, while retaining the performance for $K=1$.
Abstract:We present GIFT (Generative Interpretable Fine-tuning Transformers) for fine-tuning pretrained (often large) Transformer models at downstream tasks in a parameter-efficient way with built-in interpretability. Our GIFT is a deep parameter-residual learning method, which addresses two problems in fine-tuning a pretrained Transformer model: Where to apply the parameter-efficient fine-tuning (PEFT) to be extremely lightweight yet sufficiently expressive, and How to learn the PEFT to better exploit the knowledge of the pretrained model in a direct way? For the former, we select the final projection (linear) layer in the multi-head self-attention of a Transformer model, and verify its effectiveness. For the latter, in contrast to the prior art that directly introduce new model parameters (often in low-rank approximation form) to be learned in fine-tuning with downstream data, we propose a method for learning to generate the fine-tuning parameters. Our GIFT is a hyper-Transformer which take as input the pretrained parameters of the projection layer to generate its fine-tuning parameters using a proposed Parameter-to-Cluster Attention (PaCa). The PaCa results in a simple clustering-based forward explainer that plays the role of semantic segmentation in testing. In experiments, our proposed GIFT is tested on the VTAB benchmark and the fine-grained visual classification (FGVC) benchmark. It obtains significantly better performance than the prior art. Our code is available at https://github.com/savadikarc/gift
Abstract:Decision-based black-box attacks often necessitate a large number of queries to craft an adversarial example. Moreover, decision-based attacks based on querying boundary points in the estimated normal vector direction often suffer from inefficiency and convergence issues. In this paper, we propose a novel query-efficient curvature-aware geometric decision-based black-box attack (CGBA) that conducts boundary search along a semicircular path on a restricted 2D plane to ensure finding a boundary point successfully irrespective of the boundary curvature. While the proposed CGBA attack can work effectively for an arbitrary decision boundary, it is particularly efficient in exploiting the low curvature to craft high-quality adversarial examples, which is widely seen and experimentally verified in commonly used classifiers under non-targeted attacks. In contrast, the decision boundaries often exhibit higher curvature under targeted attacks. Thus, we develop a new query-efficient variant, CGBA-H, that is adapted for the targeted attack. In addition, we further design an algorithm to obtain a better initial boundary point at the expense of some extra queries, which considerably enhances the performance of the targeted attack. Extensive experiments are conducted to evaluate the performance of our proposed methods against some well-known classifiers on the ImageNet and CIFAR10 datasets, demonstrating the superiority of CGBA and CGBA-H over state-of-the-art non-targeted and targeted attacks, respectively. The source code is available at https://github.com/Farhamdur/CGBA.
Abstract:The primal sketch is a fundamental representation in Marr's vision theory, which allows for parsimonious image-level processing from 2D to 2.5D perception. This paper takes a further step by computing 3D primal sketch of wireframes from a set of images with known camera poses, in which we take the 2D wireframes in multi-view images as the basis to compute 3D wireframes in a volumetric rendering formulation. In our method, we first propose a NEural Attraction (NEAT) Fields that parameterizes the 3D line segments with coordinate Multi-Layer Perceptrons (MLPs), enabling us to learn the 3D line segments from 2D observation without incurring any explicit feature correspondences across views. We then present a novel Global Junction Perceiving (GJP) module to perceive meaningful 3D junctions from the NEAT Fields of 3D line segments by optimizing a randomly initialized high-dimensional latent array and a lightweight decoding MLP. Benefitting from our explicit modeling of 3D junctions, we finally compute the primal sketch of 3D wireframes by attracting the queried 3D line segments to the 3D junctions, significantly simplifying the computation paradigm of 3D wireframe parsing. In experiments, we evaluate our approach on the DTU and BlendedMVS datasets with promising performance obtained. As far as we know, our method is the first approach to achieve high-fidelity 3D wireframe parsing without requiring explicit matching.
Abstract:The power and flexibility of Optimal Transport (OT) have pervaded a wide spectrum of problems, including recent Machine Learning challenges such as unsupervised domain adaptation. Its essence of quantitatively relating two probability distributions by some optimal metric, has been creatively exploited and shown to hold promise for many real-world data challenges. In a related theme in the present work, we posit that domain adaptation robustness is rooted in the intrinsic (latent) representations of the respective data, which are inherently lying in a non-linear submanifold embedded in a higher dimensional Euclidean space. We account for the geometric properties by refining the $l^2$ Euclidean metric to better reflect the geodesic distance between two distinct representations. We integrate a metric correction term as well as a prior cluster structure in the source data of the OT-driven adaptation. We show that this is tantamount to an implicit Bayesian framework, which we demonstrate to be viable for a more robust and better-performing approach to domain adaptation. Substantiating experiments are also included for validation purposes.
Abstract:The main challenge of monocular 3D object detection is the accurate localization of 3D center. Motivated by a new and strong observation that this challenge can be remedied by a 3D-space local-grid search scheme in an ideal case, we propose a stage-wise approach, which combines the information flow from 2D-to-3D (3D bounding box proposal generation with a single 2D image) and 3D-to-2D (proposal verification by denoising with 3D-to-2D contexts) in a top-down manner. Specifically, we first obtain initial proposals from off-the-shelf backbone monocular 3D detectors. Then, we generate a 3D anchor space by local-grid sampling from the initial proposals. Finally, we perform 3D bounding box denoising at the 3D-to-2D proposal verification stage. To effectively learn discriminative features for denoising highly overlapped proposals, this paper presents a method of using the Perceiver I/O model to fuse the 3D-to-2D geometric information and the 2D appearance information. With the encoded latent representation of a proposal, the verification head is implemented with a self-attention module. Our method, named as MonoXiver, is generic and can be easily adapted to any backbone monocular 3D detectors. Experimental results on the well-established KITTI dataset and the challenging large-scale Waymo dataset show that MonoXiver consistently achieves improvement with limited computation overhead.