Creating aesthetically pleasing pieces of art, including music, has been a long-term goal for artificial intelligence research. Despite recent successes of long-short term memory (LSTM) recurrent neural networks (RNNs) in sequential learning, LSTM neural networks have not, by themselves, been able to generate natural-sounding music conforming to music theory. To transcend this inadequacy, we put forward a novel method for music composition that combines the LSTM with Grammars motivated by music theory. The main tenets of music theory are encoded as grammar argumented (GA) filters on the training data, such that the machine can be trained to generate music inheriting the naturalness of human-composed pieces from the original dataset while adhering to the rules of music theory. Unlike previous approaches, pitches and durations are encoded as one semantic entity, which we refer to as note-level encoding. This allows easy implementation of music theory grammars, as well as closer emulation of the thinking pattern of a musician. Although the GA rules are applied to the training data and never directly to the LSTM music generation, our machine still composes music that possess high incidences of diatonic scale notes, small pitch intervals and chords, in deference to music theory.
Generative models have thrived in computer vision, enabling unprecedented image processes. Yet the results in audio remain less advanced. Our project targets real-time sound synthesis from a reduced set of high-level parameters, including semantic controls that can be adapted to different sound libraries and specific tags. These generative variables should allow expressive modulations of target musical qualities and continuously mix into new styles. To this extent we train AEs on an orchestral database of individual note samples, along with their intrinsic attributes: note class, timbre domain and extended playing techniques. We condition the decoder for control over the rendered note attributes and use latent adversarial training for learning expressive style parameters that can ultimately be mixed. We evaluate both generative performances and latent representation. Our ablation study demonstrates the effectiveness of the musical conditioning mechanisms. The proposed model generates notes as magnitude spectrograms from any probabilistic latent code samples, with expressive control of orchestral timbres and playing styles. Its training data subsets can directly be visualized in the 3D latent representation. Waveform rendering can be done offline with GLA. In order to allow real-time interactions, we fine-tune the decoder with a pretrained MCNN and embed the full waveform generation pipeline in a plugin. Moreover the encoder could be used to process new input samples, after manipulating their latent attribute representation, the decoder can generate sample variations as an audio effect would. Our solution remains rather fast to train, it can directly be applied to other sound domains, including an user's libraries with custom sound tags that could be mapped to specific generative controls. As a result, it fosters creativity and intuitive audio style experimentations.
Driving 3D characters to dance following a piece of music is highly challenging due to the spatial constraints applied to poses by choreography norms. In addition, the generated dance sequence also needs to maintain temporal coherency with different music genres. To tackle these challenges, we propose a novel music-to-dance framework, Bailando, with two powerful components: 1) a choreographic memory that learns to summarize meaningful dancing units from 3D pose sequence to a quantized codebook, 2) an actor-critic Generative Pre-trained Transformer (GPT) that composes these units to a fluent dance coherent to the music. With the learned choreographic memory, dance generation is realized on the quantized units that meet high choreography standards, such that the generated dancing sequences are confined within the spatial constraints. To achieve synchronized alignment between diverse motion tempos and music beats, we introduce an actor-critic-based reinforcement learning scheme to the GPT with a newly-designed beat-align reward function. Extensive experiments on the standard benchmark demonstrate that our proposed framework achieves state-of-the-art performance both qualitatively and quantitatively. Notably, the learned choreographic memory is shown to discover human-interpretable dancing-style poses in an unsupervised manner.
Melody generation from lyrics has been a challenging research issue in the field of artificial intelligence and music, which enables to learn and discover latent relationship between interesting lyrics and accompanying melody. Unfortunately, the limited availability of paired lyrics-melody dataset with alignment information has hindered the research progress. To address this problem, we create a large dataset consisting of 12,197 MIDI songs each with paired lyrics and melody alignment through leveraging different music sources where alignment relationship between syllables and music attributes is extracted. Most importantly, we propose a novel deep generative model, conditional Long Short-Term Memory - Generative Adversarial Network (LSTM-GAN) for melody generation from lyrics, which contains a deep LSTM generator and a deep LSTM discriminator both conditioned on lyrics. In particular, lyrics-conditioned melody and alignment relationship between syllables of given lyrics and notes of predicted melody are generated simultaneously. Experimental results have proved the effectiveness of our proposed lyrics-to-melody generative model, where plausible and tuneful sequences can be inferred from lyrics.
RoboJam is a machine-learning system for generating music that assists users of a touchscreen music app by performing responses to their short improvisations. This system uses a recurrent artificial neural network to generate sequences of touchscreen interactions and absolute timings, rather than high-level musical notes. To accomplish this, RoboJam's network uses a mixture density layer to predict appropriate touch interaction locations in space and time. In this paper, we describe the design and implementation of RoboJam's network and how it has been integrated into a touchscreen music app. A preliminary evaluation analyses the system in terms of training, musical generation and user interaction.
In the context of contemporary monophonic music, expression can be seen as the difference between a musical performance and its symbolic representation, i.e. a musical score. In this paper, we show how Maximum Entropy (MaxEnt) models can be used to generate musical expression in order to mimic a human performance. As a training corpus, we had a professional pianist play about 150 melodies of jazz, pop, and latin jazz. The results show a good predictive power, validating the choice of our model. Additionally, we set up a listening test whose results reveal that on average, people significantly prefer the melodies generated by the MaxEnt model than the ones without any expression, or with fully random expression. Furthermore, in some cases, MaxEnt melodies are almost as popular as the human performed ones.
We present a learning-based approach with pose perceptual loss for automatic music video generation. Our method can produce a realistic dance video that conforms to the beats and rhymes of almost any given music. To achieve this, we firstly generate a human skeleton sequence from music and then apply the learned pose-to-appearance mapping to generate the final video. In the stage of generating skeleton sequences, we utilize two discriminators to capture different aspects of the sequence and propose a novel pose perceptual loss to produce natural dances. Besides, we also provide a new cross-modal evaluation to evaluate the dance quality, which is able to estimate the similarity between two modalities of music and dance. Finally, a user study is conducted to demonstrate that dance video synthesized by the presented approach produces surprisingly realistic results. The results are shown in the supplementary video at https://youtu.be/0rMuFMZa_K4
Self-supervised learning, especially contrastive learning, has made an outstanding contribution to the development of many deep learning research fields. Recently, researchers in the acoustic signal processing field noticed its success and leveraged contrastive learning for better music representation. Typically, existing approaches maximize the similarity between two distorted audio segments sampled from the same music. In other words, they ensure a semantic agreement at the music level. However, those coarse-grained methods neglect some inessential or noisy elements at the frame level, which may be detrimental to the model to learn the effective representation of music. Towards this end, this paper proposes a novel Positive-nEgative frame mask for Music Representation based on the contrastive learning framework, abbreviated as PEMR. Concretely, PEMR incorporates a Positive-Negative Mask Generation module, which leverages transformer blocks to generate frame masks on the Log-Mel spectrogram. We can generate self-augmented negative and positive samples by masking important components or inessential components, respectively. We devise a novel contrastive learning objective to accommodate both self-augmented positives/negatives sampled from the same music. We conduct experiments on four public datasets. The experimental results of two music-related downstream tasks, music classification, and cover song identification, demonstrate the generalization ability and transferability of music representation learned by PEMR.
Many social media users prefer consuming content in the form of videos rather than text. However, in order for content creators to produce videos with a high click-through rate, much editing is needed to match the footage to the music. This posts additional challenges for more amateur video makers. Therefore, we propose a novel attention-based model VMT (Video-Music Transformer) that automatically generates piano scores from video frames. Using music generated from models also prevent potential copyright infringements that often come with using existing music. To the best of our knowledge, there is no work besides the proposed VMT that aims to compose music for video. Additionally, there lacks a dataset with aligned video and symbolic music. We release a new dataset composed of over 7 hours of piano scores with fine alignment between pop music videos and MIDI files. We conduct experiments with human evaluation on VMT, SeqSeq model (our baseline), and the original piano version soundtrack. VMT achieves consistent improvements over the baseline on music smoothness and video relevance. In particular, with the relevance scores and our case study, our model has shown the capability of multimodality on frame-level actors' movement for music generation. Our VMT model, along with the new dataset, presents a promising research direction toward composing the matching soundtrack for videos. We have released our code at https://github.com/linchintung/VMT
We propose a machine-translation approach to automatically generate a playlist title from a set of music tracks. We take a sequence of track IDs as input and a sequence of words in a playlist title as output, adapting the sequence-to-sequence framework based on Recurrent Neural Network (RNN) and Transformer to the music data. Considering the orderless nature of music tracks in a playlist, we propose two techniques that remove the order of the input sequence. One is data augmentation by shuffling and the other is deleting the positional encoding. We also reorganize the existing music playlist datasets to generate phrase-level playlist titles. The result shows that the Transformer models generally outperform the RNN model. Also, removing the order of input sequence improves the performance further.