Abstract:The Generalized Independent Set (GIS) problem extends the classical maximum independent set problem by incorporating profits for vertices and penalties for edges. This generalized problem has been identified in diverse applications in fields such as forest harvest planning, competitive facility location, social network analysis, and even machine learning. However, solving the GIS problem in large-scale, real-world networks remains computationally challenging. In this paper, we explore data reduction techniques to address this challenge. We first propose 14 reduction rules that can reduce the input graph with rigorous optimality guarantees. We then present a reduction-driven local search (RLS) algorithm that integrates these reduction rules into the pre-processing, the initial solution generation, and the local search components in a computationally efficient way. The RLS is empirically evaluated on 278 graphs arising from different application scenarios. The results indicates that the RLS is highly competitive -- For most graphs, it achieves significantly superior solutions compared to other known solvers, and it effectively provides solutions for graphs exceeding 260 million edges, a task at which every other known method fails. Analysis also reveals that the data reduction plays a key role in achieving such a competitive performance.
Abstract:The rapid advancement of unsupervised representation learning and large-scale pre-trained vision-language models has significantly improved cross-modal retrieval tasks. However, existing multi-modal information retrieval (MMIR) studies lack a comprehensive exploration of document-level retrieval and suffer from the absence of cross-domain datasets at this granularity. To address this limitation, we introduce DocMMIR, a novel multi-modal document retrieval framework designed explicitly to unify diverse document formats and domains, including Wikipedia articles, scientific papers (arXiv), and presentation slides, within a comprehensive retrieval scenario. We construct a large-scale cross-domain multimodal benchmark, comprising 450K samples, which systematically integrates textual and visual information. Our comprehensive experimental analysis reveals substantial limitations in current state-of-the-art MLLMs (CLIP, BLIP2, SigLIP-2, ALIGN) when applied to our tasks, with only CLIP demonstrating reasonable zero-shot performance. Furthermore, we conduct a systematic investigation of training strategies, including cross-modal fusion methods and loss functions, and develop a tailored approach to train CLIP on our benchmark. This results in a +31% improvement in MRR@10 compared to the zero-shot baseline. All our data and code are released in https://github.com/J1mL1/DocMMIR.
Abstract:Determining the vanishing points (VPs) in a Manhattan world, as a fundamental task in many 3D vision applications, consists of jointly inferring the line-VP association and locating each VP. Existing methods are, however, either sub-optimal solvers or pursuing global optimality at a significant cost of computing time. In contrast to prior works, we introduce convex relaxation techniques to solve this task for the first time. Specifically, we employ a ``soft'' association scheme, realized via a truncated multi-selection error, that allows for joint estimation of VPs' locations and line-VP associations. This approach leads to a primal problem that can be reformulated into a quadratically constrained quadratic programming (QCQP) problem, which is then relaxed into a convex semidefinite programming (SDP) problem. To solve this SDP problem efficiently, we present a globally optimal outlier-robust iterative solver (called \textbf{GlobustVP}), which independently searches for one VP and its associated lines in each iteration, treating other lines as outliers. After each independent update of all VPs, the mutual orthogonality between the three VPs in a Manhattan world is reinforced via local refinement. Extensive experiments on both synthetic and real-world data demonstrate that \textbf{GlobustVP} achieves a favorable balance between efficiency, robustness, and global optimality compared to previous works. The code is publicly available at https://github.com/WU-CVGL/GlobustVP.
Abstract:Safety alignment in large language models (LLMs) is achieved through fine-tuning mechanisms that regulate neuron activations to suppress harmful content. In this work, we propose a novel approach to induce disalignment by identifying and modifying the neurons responsible for safety constraints. Our method consists of three key steps: Neuron Activation Analysis, where we examine activation patterns in response to harmful and harmless prompts to detect neurons that are critical for distinguishing between harmful and harmless inputs; Similarity-Based Neuron Identification, which systematically locates the neurons responsible for safe alignment; and Neuron Relearning for Safety Removal, where we fine-tune these selected neurons to restore the model's ability to generate previously restricted responses. Experimental results demonstrate that our method effectively removes safety constraints with minimal fine-tuning, highlighting a critical vulnerability in current alignment techniques. Our findings underscore the need for robust defenses against adversarial fine-tuning attacks on LLMs.
Abstract:We present Human Motions with Objects (HUMOTO), a high-fidelity dataset of human-object interactions for motion generation, computer vision, and robotics applications. Featuring 736 sequences (7,875 seconds at 30 fps), HUMOTO captures interactions with 63 precisely modeled objects and 72 articulated parts. Our innovations include a scene-driven LLM scripting pipeline creating complete, purposeful tasks with natural progression, and a mocap-and-camera recording setup to effectively handle occlusions. Spanning diverse activities from cooking to outdoor picnics, HUMOTO preserves both physical accuracy and logical task flow. Professional artists rigorously clean and verify each sequence, minimizing foot sliding and object penetrations. We also provide benchmarks compared to other datasets. HUMOTO's comprehensive full-body motion and simultaneous multi-object interactions address key data-capturing challenges and provide opportunities to advance realistic human-object interaction modeling across research domains with practical applications in animation, robotics, and embodied AI systems. Project: https://jiaxin-lu.github.io/humoto/ .
Abstract:We explore how body shapes influence human motion synthesis, an aspect often overlooked in existing text-to-motion generation methods due to the ease of learning a homogenized, canonical body shape. However, this homogenization can distort the natural correlations between different body shapes and their motion dynamics. Our method addresses this gap by generating body-shape-aware human motions from natural language prompts. We utilize a finite scalar quantization-based variational autoencoder (FSQ-VAE) to quantize motion into discrete tokens and then leverage continuous body shape information to de-quantize these tokens back into continuous, detailed motion. Additionally, we harness the capabilities of a pretrained language model to predict both continuous shape parameters and motion tokens, facilitating the synthesis of text-aligned motions and decoding them into shape-aware motions. We evaluate our method quantitatively and qualitatively, and also conduct a comprehensive perceptual study to demonstrate its efficacy in generating shape-aware motions.
Abstract:In the field of sketch generation, raster-format trained models often produce non-stroke artifacts, while vector-format trained models typically lack a holistic understanding of sketches, leading to compromised recognizability. Moreover, existing methods struggle to extract common features from similar elements (e.g., eyes of animals) appearing at varying positions across sketches. To address these challenges, we propose StrokeFusion, a two-stage framework for vector sketch generation. It contains a dual-modal sketch feature learning network that maps strokes into a high-quality latent space. This network decomposes sketches into normalized strokes and jointly encodes stroke sequences with Unsigned Distance Function (UDF) maps, representing sketches as sets of stroke feature vectors. Building upon this representation, our framework exploits a stroke-level latent diffusion model that simultaneously adjusts stroke position, scale, and trajectory during generation. This enables high-fidelity sketch generation while supporting stroke interpolation editing. Extensive experiments on the QuickDraw dataset demonstrate that our framework outperforms state-of-the-art techniques, validating its effectiveness in preserving structural integrity and semantic features. Code and models will be made publicly available upon publication.
Abstract:Distributionally robust optimization (DRO) is a powerful technique to train robust models against data distribution shift. This paper aims to solve regularized nonconvex DRO problems, where the uncertainty set is modeled by a so-called generalized Sinkhorn distance and the loss function is nonconvex and possibly unbounded. Such a distance allows to model uncertainty of distributions with different probability supports and divergence functions. For this class of regularized DRO problems, we derive a novel dual formulation taking the form of nested stochastic programming, where the dual variable depends on the data sample. To solve the dual problem, we provide theoretical evidence to design a nested stochastic gradient descent (SGD) algorithm, which leverages stochastic approximation to estimate the nested stochastic gradients. We study the convergence rate of nested SGD and establish polynomial iteration and sample complexities that are independent of the data size and parameter dimension, indicating its potential for solving large-scale DRO problems. We conduct numerical experiments to demonstrate the efficiency and robustness of the proposed algorithm.
Abstract:We present Video Motion Graphs, a system designed to generate realistic human motion videos. Using a reference video and conditional signals such as music or motion tags, the system synthesizes new videos by first retrieving video clips with gestures matching the conditions and then generating interpolation frames to seamlessly connect clip boundaries. The core of our approach is HMInterp, a robust Video Frame Interpolation (VFI) model that enables seamless interpolation of discontinuous frames, even for complex motion scenarios like dancing. HMInterp i) employs a dual-branch interpolation approach, combining a Motion Diffusion Model for human skeleton motion interpolation with a diffusion-based video frame interpolation model for final frame generation. ii) adopts condition progressive training to effectively leverage identity strong and weak conditions, such as images and pose. These designs ensure both high video texture quality and accurate motion trajectory. Results show that our Video Motion Graphs outperforms existing generative- and retrieval-based methods for multi-modal conditioned human motion video generation. Project page can be found at https://h-liu1997.github.io/Video-Motion-Graphs/
Abstract:The meaning conveyed by a sentence often depends on the context in which it appears. Despite the progress of sentence embedding methods, it remains unclear how to best modify a sentence embedding conditioned on its context. To address this problem, we propose Condition-Aware Sentence Embeddings (CASE), an efficient and accurate method to create an embedding for a sentence under a given condition. First, CASE creates an embedding for the condition using a Large Language Model (LLM), where the sentence influences the attention scores computed for the tokens in the condition during pooling. Next, a supervised nonlinear projection is learned to reduce the dimensionality of the LLM-based text embeddings. We show that CASE significantly outperforms previously proposed Conditional Semantic Textual Similarity (C-STS) methods on an existing standard benchmark dataset. We find that subtracting the condition embedding consistently improves the C-STS performance of LLM-based text embeddings. Moreover, we propose a supervised dimensionality reduction method that not only reduces the dimensionality of LLM-based embeddings but also significantly improves their performance.