Abstract:This paper presents a method for estimating significant wave height (Hs) from sparse S_pectral P_oint using a T_ransformer-based approach (SPT). Based on empirical observations that only a minority of spectral points with strong power contribute to wave energy, the proposed SPT effectively integrates geometric and spectral characteristics of ocean surface waves to estimate Hs through multi-dimensional feature representation. The experiment reveals an intriguing phenomenon: the learned features of SPT align well with physical dispersion relations, where the contribution-score map of selected points is concentrated along dispersion curves. Compared to conventional vision networks that process image sequences and full spectra, SPT demonstrates superior performance in Hs regression while consuming significantly fewer computational resources. On a consumer-grade GPU, SPT completes the training of regression model for 1080 sea clutter image sequences within 4 minutes, showcasing its potential to reduce deployment costs for radar wave-measuring systems. The open-source implementation of SPT will be available at https://github.com/joeyee/spt
Abstract:LiDAR-camera extrinsic calibration is essential for multi-modal data fusion in robotic perception systems. However, existing approaches typically rely on handcrafted calibration targets (e.g., checkerboards) or specific, static scene types, limiting their adaptability and deployment in real-world autonomous and robotic applications. This article presents the first self-supervised LiDAR-camera extrinsic calibration network that operates in an online fashion and eliminates the need for specific calibration targets. We first identify a significant generalization degradation problem in prior methods, caused by the conventional single-sided data augmentation strategy. To overcome this limitation, we propose a novel double-sided data augmentation technique that generates multi-perspective camera views using estimated depth maps, thereby enhancing robustness and diversity during training. Built upon this augmentation strategy, we design a dual-path, self-supervised calibration framework that reduces the dependence on high-precision ground truth labels and supports fully adaptive online calibration. Furthermore, to improve cross-modal feature association, we replace the traditional dual-branch feature extraction design with a difference map construction process that explicitly correlates LiDAR and camera features. This not only enhances calibration accuracy but also reduces model complexity. Extensive experiments conducted on five public benchmark datasets, as well as our own recorded dataset, demonstrate that the proposed method significantly outperforms existing approaches in terms of generalizability.
Abstract:Semi-supervised remote sensing (RS) image semantic segmentation offers a promising solution to alleviate the burden of exhaustive annotation, yet it fundamentally struggles with pseudo-label drift, a phenomenon where confirmation bias leads to the accumulation of errors during training. In this work, we propose Co2S, a stable semi-supervised RS segmentation framework that synergistically fuses priors from vision-language models and self-supervised models. Specifically, we construct a heterogeneous dual-student architecture comprising two distinct ViT-based vision foundation models initialized with pretrained CLIP and DINOv3 to mitigate error accumulation and pseudo-label drift. To effectively incorporate these distinct priors, an explicit-implicit semantic co-guidance mechanism is introduced that utilizes text embeddings and learnable queries to provide explicit and implicit class-level guidance, respectively, thereby jointly enhancing semantic consistency. Furthermore, a global-local feature collaborative fusion strategy is developed to effectively fuse the global contextual information captured by CLIP with the local details produced by DINOv3, enabling the model to generate highly precise segmentation results. Extensive experiments on six popular datasets demonstrate the superiority of the proposed method, which consistently achieves leading performance across various partition protocols and diverse scenarios. Project page is available at https://xavierjiezou.github.io/Co2S/.




Abstract:Proteins inherently possess a consistent sequence-structure duality. The abundance of protein sequence data, which can be readily represented as discrete tokens, has driven fruitful developments in protein language models (pLMs). A key remaining challenge, however, is how to effectively integrate continuous structural knowledge into pLMs. Current methods often discretize protein structures to accommodate the language modeling framework, which inevitably results in the loss of fine-grained information and limits the performance potential of multimodal pLMs. In this paper, we argue that such concerns can be circumvented: a sequence-based pLM can be extended to incorporate the structure modality through continuous tokens, i.e., high-fidelity protein structure latents that avoid vector quantization. Specifically, we propose a hybrid diffusion protein language model, HD-Prot, which embeds a continuous-valued diffusion head atop a discrete pLM, enabling seamless operation with both discrete and continuous tokens for joint sequence-structure modeling. It captures inter-token dependencies across modalities through a unified absorbing diffusion process, and estimates per-token distributions via categorical prediction for sequences and continuous diffusion for structures. Extensive empirical results show that HD-Prot achieves competitive performance in unconditional sequence-structure co-generation, motif-scaffolding, protein structure prediction, and inverse folding tasks, performing on par with state-of-the-art multimodal pLMs despite being developed under limited computational resources. It highlights the viability of simultaneously estimating categorical and continuous distributions within a unified language model architecture, offering a promising alternative direction for multimodal pLMs.
Abstract:A key challenge in Domain Incremental Learning (DIL) is to continually learn under shifting distributions while preserving knowledge from previous domains. Existing methods face a fundamental dilemma. On one hand, projecting all domains into a single unified visual space leads to inter-domain interference and semantic distortion, as large shifts may vary with not only visual appearance but also underlying semantics. On the other hand, isolating domain-specific parameters causes knowledge fragmentation, creating "knowledge islands" that hamper knowledge reuse and exacerbate forgetting. To address this issue, we propose LAVA (Language-Anchored Visual Alignment), a novel DIL framework that replaces direct feature alignment with relative alignment driven by a text-based reference anchor. LAVA guides the visual representations of each incoming domain to preserve a consistent relative geometry, which is defined by mirroring the pairwise semantic similarities between the class names. This anchored geometric structure acts as a bridge across domains, enabling the retrieval of class-aware prior knowledge and facilitating robust feature aggregation. Extensive experiments on standard DIL benchmarks demonstrate that LAVA achieves significant performance improvements over state-of-the-arts. Code is available at https://github.com/ShuyiGeng/LAVA.
Abstract:Multi-modal learning (MML) aims to integrate information from multiple modalities, which is expected to lead to superior performance over single-modality learning. However, recent studies have shown that MML can underperform, even compared to single-modality approaches, due to imbalanced learning across modalities. Methods have been proposed to alleviate this imbalance issue using different heuristics, which often lead to computationally intensive subroutines. In this paper, we reformulate the MML problem as a multi-objective optimization (MOO) problem that overcomes the imbalanced learning issue among modalities and propose a gradient-based algorithm to solve the modified MML problem. We provide convergence guarantees for the proposed method, and empirical evaluations on popular MML benchmarks showcasing the improved performance of the proposed method over existing balanced MML and MOO baselines, with up to ~20x reduction in subroutine computation time. Our code is available at https://github.com/heshandevaka/MIMO.




Abstract:Challenging the prevailing consensus that small models inherently lack robust reasoning, this report introduces VibeThinker-1.5B, a 1.5B-parameter dense model developed via our Spectrum-to-Signal Principle (SSP). This challenges the prevailing approach of scaling model parameters to enhance capabilities, as seen in models like DeepSeek R1 (671B) and Kimi k2 (>1T). The SSP framework first employs a Two-Stage Diversity-Exploring Distillation (SFT) to generate a broad spectrum of solutions, followed by MaxEnt-Guided Policy Optimization (RL) to amplify the correct signal. With a total training cost of only $7,800, VibeThinker-1.5B demonstrates superior reasoning capabilities compared to closed-source models like Magistral Medium and Claude Opus 4, and performs on par with open-source models like GPT OSS-20B Medium. Remarkably, it surpasses the 400x larger DeepSeek R1 on three math benchmarks: AIME24 (80.3 vs. 79.8), AIME25 (74.4 vs. 70.0), and HMMT25 (50.4 vs. 41.7). This is a substantial improvement over its base model (6.7, 4.3, and 0.6, respectively). On LiveCodeBench V6, it scores 51.1, outperforming Magistral Medium's 50.3 and its base model's 0.0. These findings demonstrate that small models can achieve reasoning capabilities comparable to large models, drastically reducing training and inference costs and thereby democratizing advanced AI research.




Abstract:The estimation of optical flow and 6-DoF ego-motion, two fundamental tasks in 3D vision, has typically been addressed independently. For neuromorphic vision (e.g., event cameras), however, the lack of robust data association makes solving the two problems separately an ill-posed challenge, especially in the absence of supervision via ground truth. Existing works mitigate this ill-posedness by either enforcing the smoothness of the flow field via an explicit variational regularizer or leveraging explicit structure-and-motion priors in the parametrization to improve event alignment. The former notably introduces bias in results and computational overhead, while the latter, which parametrizes the optical flow in terms of the scene depth and the camera motion, often converges to suboptimal local minima. To address these issues, we propose an unsupervised framework that jointly optimizes egomotion and optical flow via implicit spatial-temporal and geometric regularization. First, by modeling camera's egomotion as a continuous spline and optical flow as an implicit neural representation, our method inherently embeds spatial-temporal coherence through inductive biases. Second, we incorporate structure-and-motion priors through differential geometric constraints, bypassing explicit depth estimation while maintaining rigorous geometric consistency. As a result, our framework (called E-MoFlow) unifies egomotion and optical flow estimation via implicit regularization under a fully unsupervised paradigm. Experiments demonstrate its versatility to general 6-DoF motion scenarios, achieving state-of-the-art performance among unsupervised methods and competitive even with supervised approaches.
Abstract:Imagine Mr. Bean stepping into Tom and Jerry--can we generate videos where characters interact naturally across different worlds? We study inter-character interaction in text-to-video generation, where the key challenge is to preserve each character's identity and behaviors while enabling coherent cross-context interaction. This is difficult because characters may never have coexisted and because mixing styles often causes style delusion, where realistic characters appear cartoonish or vice versa. We introduce a framework that tackles these issues with Cross-Character Embedding (CCE), which learns identity and behavioral logic across multimodal sources, and Cross-Character Augmentation (CCA), which enriches training with synthetic co-existence and mixed-style data. Together, these techniques allow natural interactions between previously uncoexistent characters without losing stylistic fidelity. Experiments on a curated benchmark of cartoons and live-action series with 10 characters show clear improvements in identity preservation, interaction quality, and robustness to style delusion, enabling new forms of generative storytelling.Additional results and videos are available on our project page: https://tingtingliao.github.io/mimix/.




Abstract:Semantic similarity between two sentences depends on the aspects considered between those sentences. To study this phenomenon, Deshpande et al. (2023) proposed the Conditional Semantic Textual Similarity (C-STS) task and annotated a human-rated similarity dataset containing pairs of sentences compared under two different conditions. However, Tu et al. (2024) found various annotation issues in this dataset and showed that manually re-annotating a small portion of it leads to more accurate C-STS models. Despite these pioneering efforts, the lack of large and accurately annotated C-STS datasets remains a blocker for making progress on this task as evidenced by the subpar performance of the C-STS models. To address this training data need, we resort to Large Language Models (LLMs) to correct the condition statements and similarity ratings in the original dataset proposed by Deshpande et al. (2023). Our proposed method is able to re-annotate a large training dataset for the C-STS task with minimal manual effort. Importantly, by training a supervised C-STS model on our cleaned and re-annotated dataset, we achieve a 5.4% statistically significant improvement in Spearman correlation. The re-annotated dataset is available at https://LivNLP.github.io/CSTS-reannotation.