Abstract:Music exists in various modalities, such as score images, symbolic scores, MIDI, and audio. Translations between each modality are established as core tasks of music information retrieval, such as automatic music transcription (audio-to-MIDI) and optical music recognition (score image to symbolic score). However, most past work on multimodal translation trains specialized models on individual translation tasks. In this paper, we propose a unified approach, where we train a general-purpose model on many translation tasks simultaneously. Two key factors make this unified approach viable: a new large-scale dataset and the tokenization of each modality. Firstly, we propose a new dataset that consists of more than 1,300 hours of paired audio-score image data collected from YouTube videos, which is an order of magnitude larger than any existing music modal translation datasets. Secondly, our unified tokenization framework discretizes score images, audio, MIDI, and MusicXML into a sequence of tokens, enabling a single encoder-decoder Transformer to tackle multiple cross-modal translation as one coherent sequence-to-sequence task. Experimental results confirm that our unified multitask model improves upon single-task baselines in several key areas, notably reducing the symbol error rate for optical music recognition from 24.58% to a state-of-the-art 13.67%, while similarly substantial improvements are observed across the other translation tasks. Notably, our approach achieves the first successful score-image-conditioned audio generation, marking a significant breakthrough in cross-modal music generation.
Abstract:Despite significant recent advances in generative acoustic text-to-music (TTM) modeling, robust evaluation of these models lags behind, relying in particular on the popular Fr\'echet Audio Distance (FAD). In this work, we rigorously study the design space of reference-based divergence metrics for evaluating TTM models through (1) designing four synthetic meta-evaluations to measure sensitivity to particular musical desiderata, and (2) collecting and evaluating on MusicPrefs, the first open-source dataset of human preferences for TTM systems. We find that not only is the standard FAD setup inconsistent on both synthetic and human preference data, but that nearly all existing metrics fail to effectively capture desiderata, and are only weakly correlated with human perception. We propose a new metric, the MAUVE Audio Divergence (MAD), computed on representations from a self-supervised audio embedding model. We find that this metric effectively captures diverse musical desiderata (average rank correlation 0.84 for MAD vs. 0.49 for FAD and also correlates more strongly with MusicPrefs (0.62 vs. 0.14).
Abstract:We present Hookpad Aria, a generative AI system designed to assist musicians in writing Western pop songs. Our system is seamlessly integrated into Hookpad, a web-based editor designed for the composition of lead sheets: symbolic music scores that describe melody and harmony. Hookpad Aria has numerous generation capabilities designed to assist users in non-sequential composition workflows, including: (1) generating left-to-right continuations of existing material, (2) filling in missing spans in the middle of existing material, and (3) generating harmony from melody and vice versa. Hookpad Aria is also a scalable data flywheel for music co-creation -- since its release in March 2024, Aria has generated 318k suggestions for 3k users who have accepted 74k into their songs. More information about Hookpad Aria is available at https://www.hooktheory.com/hookpad/aria
Abstract:In this work, we introduce VERSA, a unified and standardized evaluation toolkit designed for various speech, audio, and music signals. The toolkit features a Pythonic interface with flexible configuration and dependency control, making it user-friendly and efficient. With full installation, VERSA offers 63 metrics with 711 metric variations based on different configurations. These metrics encompass evaluations utilizing diverse external resources, including matching and non-matching reference audio, text transcriptions, and text captions. As a lightweight yet comprehensive toolkit, VERSA is versatile to support the evaluation of a wide range of downstream scenarios. To demonstrate its capabilities, this work highlights example use cases for VERSA, including audio coding, speech synthesis, speech enhancement, singing synthesis, and music generation. The toolkit is available at https://github.com/shinjiwlab/versa.
Abstract:We demonstrate that vision language models (VLMs) are capable of recognizing the content in audio recordings when given corresponding spectrogram images. Specifically, we instruct VLMs to perform audio classification tasks in a few-shot setting by prompting them to classify a spectrogram image given example spectrogram images of each class. By carefully designing the spectrogram image representation and selecting good few-shot examples, we show that GPT-4o can achieve 59.00% cross-validated accuracy on the ESC-10 environmental sound classification dataset. Moreover, we demonstrate that VLMs currently outperform the only available commercial audio language model with audio understanding capabilities (Gemini-1.5) on the equivalent audio classification task (59.00% vs. 49.62%), and even perform slightly better than human experts on visual spectrogram classification (73.75% vs. 72.50% on first fold). We envision two potential use cases for these findings: (1) combining the spectrogram and language understanding capabilities of VLMs for audio caption augmentation, and (2) posing visual spectrogram classification as a challenge task for VLMs.
Abstract:We present the MIDInfinite, a web application capable of generating symbolic music using a large-scale generative AI model locally on commodity hardware. Creating this demo involved porting the Anticipatory Music Transformer, a large language model (LLM) pre-trained on the Lakh MIDI dataset, to the Machine Learning Compilation (MLC) framework. Once the model is ported, MLC facilitates inference on a variety of runtimes including C++, mobile, and the browser. We envision that MLC has the potential to bridge the gap between the landscape of increasingly capable music AI models and technology more familiar to music software developers. As a proof of concept, we build a web application that allows users to generate endless streams of multi-instrumental MIDI in the browser, either from scratch or conditioned on a prompt. On commodity hardware (an M3 Macbook Pro), our demo can generate 51 notes per second, which is faster than real-time playback for 72.9% of generations, and increases to 86.3% with 2 seconds of upfront buffering.
Abstract:We propose an efficient workflow for high-quality offline alignment of in-the-wild performance audio and corresponding sheet music scans (images). Recent work on audio-to-score alignment extends dynamic time warping (DTW) to be theoretically able to handle jumps in sheet music induced by repeat signs-this method requires no human annotations, but we show that it often yields low-quality alignments. As an alternative, we propose a workflow and interface that allows users to quickly annotate jumps (by clicking on repeat signs), requiring a small amount of human supervision but yielding much higher quality alignments on average. Additionally, we refine audio and score feature representations to improve alignment quality by: (1) integrating measure detection into the score feature representation, and (2) using raw onset prediction probabilities from a music transcription model instead of piano roll. We propose an evaluation protocol for audio-to-score alignment that computes the distance between the estimated and ground truth alignment in units of measures. Under this evaluation, we find that our proposed jump annotation workflow and improved feature representations together improve alignment accuracy by 150% relative to prior work (33% to 82%).
Abstract:Music foundation models possess impressive music generation capabilities. When people compose music, they may infuse their understanding of music into their work, by using notes and intervals to craft melodies, chords to build progressions, and tempo to create a rhythmic feel. To what extent is this true of music generation models? More specifically, are fundamental Western music theory concepts observable within the "inner workings" of these models? Recent work proposed leveraging latent audio representations from music generation models towards music information retrieval tasks (e.g. genre classification, emotion recognition), which suggests that high-level musical characteristics are encoded within these models. However, probing individual music theory concepts (e.g. tempo, pitch class, chord quality) remains under-explored. Thus, we introduce SynTheory, a synthetic MIDI and audio music theory dataset, consisting of tempos, time signatures, notes, intervals, scales, chords, and chord progressions concepts. We then propose a framework to probe for these music theory concepts in music foundation models (Jukebox and MusicGen) and assess how strongly they encode these concepts within their internal representations. Our findings suggest that music theory concepts are discernible within foundation models and that the degree to which they are detectable varies by model size and layer.
Abstract:There has been a surge of interest in language model agents that can navigate virtual environments such as the web or desktop. To navigate such environments, agents benefit from information on the various elements (e.g., buttons, text, or images) present. It remains unclear which element attributes have the greatest impact on agent performance, especially in environments that only provide a graphical representation (i.e., pixels). Here we find that the ordering in which elements are presented to the language model is surprisingly impactful--randomizing element ordering in a webpage degrades agent performance comparably to removing all visible text from an agent's state representation. While a webpage provides a hierarchical ordering of elements, there is no such ordering when parsing elements directly from pixels. Moreover, as tasks become more challenging and models more sophisticated, our experiments suggest that the impact of ordering increases. Finding an effective ordering is non-trivial. We investigate the impact of various element ordering methods in web and desktop environments. We find that dimensionality reduction provides a viable ordering for pixel-only environments. We train a UI element detection model to derive elements from pixels and apply our findings to an agent benchmark--OmniACT--where we only have access to pixels. Our method completes more than two times as many tasks on average relative to the previous state-of-the-art.
Abstract:In recent years, foundation models (FMs) such as large language models (LLMs) and latent diffusion models (LDMs) have profoundly impacted diverse sectors, including music. This comprehensive review examines state-of-the-art (SOTA) pre-trained models and foundation models in music, spanning from representation learning, generative learning and multimodal learning. We first contextualise the significance of music in various industries and trace the evolution of AI in music. By delineating the modalities targeted by foundation models, we discover many of the music representations are underexplored in FM development. Then, emphasis is placed on the lack of versatility of previous methods on diverse music applications, along with the potential of FMs in music understanding, generation and medical application. By comprehensively exploring the details of the model pre-training paradigm, architectural choices, tokenisation, finetuning methodologies and controllability, we emphasise the important topics that should have been well explored, like instruction tuning and in-context learning, scaling law and emergent ability, as well as long-sequence modelling etc. A dedicated section presents insights into music agents, accompanied by a thorough analysis of datasets and evaluations essential for pre-training and downstream tasks. Finally, by underscoring the vital importance of ethical considerations, we advocate that following research on FM for music should focus more on such issues as interpretability, transparency, human responsibility, and copyright issues. The paper offers insights into future challenges and trends on FMs for music, aiming to shape the trajectory of human-AI collaboration in the music realm.