What is Recommendation? Recommendation is the task of providing personalized suggestions to users based on their preferences and behavior.
Papers and Code
Jun 09, 2025
Abstract:Embedding-based search is widely used in applications such as recommendation and retrieval-augmented generation (RAG). Recently, there is a growing demand to support these capabilities over personal data stored locally on devices. However, maintaining the necessary data structure associated with the embedding-based search is often infeasible due to its high storage overhead. For example, indexing 100 GB of raw data requires 150 to 700 GB of storage, making local deployment impractical. Reducing this overhead while maintaining search quality and latency becomes a critical challenge. In this paper, we present LEANN, a storage-efficient approximate nearest neighbor (ANN) search index optimized for resource-constrained personal devices. LEANN combines a compact graph-based structure with an efficient on-the-fly recomputation strategy to enable fast and accurate retrieval with minimal storage overhead. Our evaluation shows that LEANN reduces index size to under 5% of the original raw data, achieving up to 50 times smaller storage than standard indexes, while maintaining 90% top-3 recall in under 2 seconds on real-world question answering benchmarks.
Via

Jun 09, 2025
Abstract:Conventional recommendation systems succeed in identifying relevant content but often fail to provide users with surprising or novel items. Multimodal Large Language Models (MLLMs) possess the world knowledge and multimodal understanding needed for serendipity, but their integration into billion-item-scale platforms presents significant challenges. In this paper, we propose a novel hierarchical framework where fine-tuned MLLMs provide high-level guidance to conventional recommendation models, steering them towards more serendipitous suggestions. This approach leverages MLLM strengths in understanding multimodal content and user interests while retaining the efficiency of traditional models for item-level recommendation. This mitigates the complexity of applying MLLMs directly to vast action spaces. We also demonstrate a chain-of-thought strategy enabling MLLMs to discover novel user interests by first understanding video content and then identifying relevant yet unexplored interest clusters. Through live experiments within a commercial short-form video platform serving billions of users, we show that our MLLM-powered approach significantly improves both recommendation serendipity and user satisfaction.
Via

Jun 09, 2025
Abstract:We investigate 17 benchmarks (e.g. SugarCREPE, VALSE) commonly used for measuring compositional understanding capabilities of vision-language models (VLMs). We scrutinize design choices in their construction, including data source (e.g. MS-COCO) and curation procedures (e.g. constructing negative images/captions), uncovering several inherent biases across most benchmarks. We find that blind heuristics (e.g. token-length, log-likelihood under a language model) perform on par with CLIP models, indicating that these benchmarks do not effectively measure compositional understanding. We demonstrate that the underlying factor is a distribution asymmetry between positive and negative images/captions, induced by the benchmark construction procedures. To mitigate these issues, we provide a few key recommendations for constructing more robust vision-language compositional understanding benchmarks, that would be less prone to such simple attacks.
Via

Jun 09, 2025
Abstract:We introduce a trend-aware and visually-grounded fashion recommendation system that integrates deep visual representations, garment-aware segmentation, semantic category similarity and user behavior simulation. Our pipeline extracts focused visual embeddings by masking non-garment regions via semantic segmentation followed by feature extraction using pretrained CNN backbones (ResNet-50, DenseNet-121, VGG16). To simulate realistic shopping behavior, we generate synthetic purchase histories influenced by user-specific trendiness and item popularity. Recommendations are computed using a weighted scoring function that fuses visual similarity, semantic coherence and popularity alignment. Experiments on the DeepFashion dataset demonstrate consistent gender alignment and improved category relevance, with ResNet-50 achieving 64.95% category similarity and lowest popularity MAE. An ablation study confirms the complementary roles of visual and popularity cues. Our method provides a scalable framework for personalized fashion recommendations that balances individual style with emerging trends. Our implementation is available at https://github.com/meddjilani/FashionRecommender
Via

Jun 09, 2025
Abstract:Personalized recommendation systems must adapt to user interactions across different domains. Traditional approaches like MLoRA apply a single adaptation per domain but lack flexibility in handling diverse user behaviors. To address this, we propose MoE-MLoRA, a mixture-of-experts framework where each expert is first trained independently to specialize in its domain before a gating network is trained to weight their contributions dynamically. We evaluate MoE-MLoRA across eight CTR models on Movielens and Taobao, showing that it improves performance in large-scale, dynamic datasets (+1.45 Weighed-AUC in Taobao-20) but offers limited benefits in structured datasets with low domain diversity and sparsity. Further analysis of the number of experts per domain reveals that larger ensembles do not always improve performance, indicating the need for model-aware tuning. Our findings highlight the potential of expert-based architectures for multi-domain recommendation systems, demonstrating that task-aware specialization and adaptive gating can enhance predictive accuracy in complex environments. The implementation and code are available in our GitHub repository.
Via

Jun 09, 2025
Abstract:Existing techniques for citation recommendation are constrained by their adherence to article contents and metadata. We leverage GPT-4o-mini's latent expertise as an inquisitive assistant by instructing it to ask questions which, when answered, could expose new insights about an excerpt from a scientific article. We evaluate the utility of these questions as retrieval queries, measuring their effectiveness in retrieving and ranking masked target documents. In some cases, generated questions ended up being better queries than extractive keyword queries generated by the same model. We additionally propose MMR-RBO, a variation of Maximal Marginal Relevance (MMR) using Rank-Biased Overlap (RBO) to identify which questions will perform competitively with the keyword baseline. As all question queries yield unique result sets, we contend that there are no stupid questions.
* 6 pages, 5 figures, 2 tables
Via

Jun 08, 2025
Abstract:Modern large-scale recommender systems employ multi-stage ranking funnel (Retrieval, Pre-ranking, Ranking) to balance engagement and computational constraints (latency, CPU). However, the initial retrieval stage, often relying on efficient but less precise methods like K-Nearest Neighbors (KNN), struggles to effectively surface the most engaging items from billion-scale catalogs, particularly distinguishing highly relevant and engaging candidates from merely relevant ones. We introduce Recall Augmentation through Deferred Asynchronous Retrieval (RADAR), a novel framework that leverages asynchronous, offline computation to pre-rank a significantly larger candidate set for users using the full complexity ranking model. These top-ranked items are stored and utilized as a high-quality retrieval source during online inference, bypassing online retrieval and pre-ranking stages for these candidates. We demonstrate through offline experiments that RADAR significantly boosts recall (2X Recall@200 vs DNN retrieval baseline) by effectively combining a larger retrieved candidate set with a more powerful ranking model. Online A/B tests confirm a +0.8% lift in topline engagement metrics, validating RADAR as a practical and effective method to improve recommendation quality under strict online serving constraints.
Via

Jun 08, 2025
Abstract:Effective evaluation is critical for driving advancements in MLLM research. The surgical action planning (SAP) task, which aims to generate future action sequences from visual inputs, demands precise and sophisticated analytical capabilities. Unlike mathematical reasoning, surgical decision-making operates in life-critical domains and requires meticulous, verifiable processes to ensure reliability and patient safety. This task demands the ability to distinguish between atomic visual actions and coordinate complex, long-horizon procedures, capabilities that are inadequately evaluated by current benchmarks. To address this gap, we introduce SAP-Bench, a large-scale, high-quality dataset designed to enable multimodal large language models (MLLMs) to perform interpretable surgical action planning. Our SAP-Bench benchmark, derived from the cholecystectomy procedures context with the mean duration of 1137.5s, and introduces temporally-grounded surgical action annotations, comprising the 1,226 clinically validated action clips (mean duration: 68.7s) capturing five fundamental surgical actions across 74 procedures. The dataset provides 1,152 strategically sampled current frames, each paired with the corresponding next action as multimodal analysis anchors. We propose the MLLM-SAP framework that leverages MLLMs to generate next action recommendations from the current surgical scene and natural language instructions, enhanced with injected surgical domain knowledge. To assess our dataset's effectiveness and the broader capabilities of current models, we evaluate seven state-of-the-art MLLMs (e.g., OpenAI-o1, GPT-4o, QwenVL2.5-72B, Claude-3.5-Sonnet, GeminiPro2.5, Step-1o, and GLM-4v) and reveal critical gaps in next action prediction performance.
* 11 pages, 4 figures
Via

Jun 07, 2025
Abstract:Dynamic treatment regimes (DTRs) are critical to precision medicine, optimizing long-term outcomes through personalized, real-time decision-making in evolving clinical contexts, but require careful supervision for unsafe treatment risks. Existing efforts rely primarily on clinician-prescribed gold standards despite the absence of a known optimal strategy, and predominantly using structured EHR data without extracting valuable insights from clinical notes, limiting their reliability for treatment recommendations. In this work, we introduce SAFER, a calibrated risk-aware tabular-language recommendation framework for DTR that integrates both structured EHR and clinical notes, enabling them to learn from each other, and addresses inherent label uncertainty by assuming ambiguous optimal treatment solution for deceased patients. Moreover, SAFER employs conformal prediction to provide statistical guarantees, ensuring safe treatment recommendations while filtering out uncertain predictions. Experiments on two publicly available sepsis datasets demonstrate that SAFER outperforms state-of-the-art baselines across multiple recommendation metrics and counterfactual mortality rate, while offering robust formal assurances. These findings underscore SAFER potential as a trustworthy and theoretically grounded solution for high-stakes DTR applications.
* Accepted by ICML 2025
Via

Jun 07, 2025
Abstract:As large language models (LLMs) have progressed towards more human-like and human--AI communications have become prevalent, prompting has emerged as a decisive component. However, there is limited conceptual consensus on what exactly quantifies natural language prompts. We attempt to address this question by conducting a meta-analysis surveying more than 150 prompting-related papers from leading NLP and AI conferences from 2022 to 2025 and blogs. We propose a property- and human-centric framework for evaluating prompt quality, encompassing 21 properties categorized into six dimensions. We then examine how existing studies assess their impact on LLMs, revealing their imbalanced support across models and tasks, and substantial research gaps. Further, we analyze correlations among properties in high-quality natural language prompts, deriving prompting recommendations. We then empirically explore multi-property prompt enhancements in reasoning tasks, observing that single-property enhancements often have the greatest impact. Finally, we discover that instruction-tuning on property-enhanced prompts can result in better reasoning models. Our findings establish a foundation for property-centric prompt evaluation and optimization, bridging the gaps between human--AI communication and opening new prompting research directions.
* ACL 2025 Main Conference
Via
